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Random number generators (RNGs) play an integral role in many scientific and commercial
applications. While a myriad of pseudo-RNGs and hardware RNGs have been developed, true
randomness is difficult to characterize. In recent years, there has been an explosion of research
work on certifiable randomness, tied to the inherently random nature of quantum mechanics and
quantum information. In this work, we assess three main routes toward certifiable randomness: 1)
Einstein certification via Bell tests, 2) cryptographic certification via the hardness of learning with
errors (LWE), and 3) certification from quantum supremacy, which is a very recent development.
We suggest potential future directions and conclude that certified random number generators may
well appear in the near future.

I. INTRODUCTION

The success and security of many applications today
are contingent on having a high-quality source of random
numbers [1]. For example, in both classical and quan-
tum cryptography, random numbers are used to gener-
ate keys for data encryption. Randomness also plays a
significant role in the sciences, from computational tech-
niques such as Monte Carlo estimation to fundamental
tests of quantum mechanics. Finally, random numbers
lend themselves naturally to numerous commercial appli-
cations such as online gambling. It is unsurprising then
that random number generators (RNGs) have provided a
steady source of research interest for many years. A nat-
ural question then arises: What actually makes a good
RNG?

To start, we should draw a clear distinction between
true randomness and pseudorandomness. True random-
ness is akin to the theoretical construct of flipping a
fair coin over and over—in other words, each outcome
is equally likely, forming a uniform distribution. In con-
trast, pseudorandomness is deterministic in nature and
thus can in principle be reverse-engineered by an adver-
sarial attack. Specifically, pseudorandom number gener-
ators (PRNGs) start from a “seed,” an input string of
bits that fully determines the output bit sequence using
some algorithm, often based off number theory [1]. While
it is sufficient for most applications to only have the ap-
pearance of true randomness, it is important that the
PRNG, while predictable, still follows the statistics of a
uniform probability distribution and be free of correla-
tions. In the early days of PRNG development this was
not the case, with a particularly infamous example being
IBM’s RANDU generator: if used to produce points in
3D space, the points map to at most 2,344 planes [2].
Many scientific results from that time period that were
based on Monte Carlo simulations are now questionable
as a result. Since then, much work has been done to
develop high-quality PRNGs. Notably, at present the
most popular implementation of a PRNG, the Mersenne
Twister, has a period of 219337 − 1 and thus one would

be hard-pressed to find a pattern in any given sequence
of numbers during a realistic operation time [3]. PRNGs
also possess certain characteristics that make them quite
attractive for most practical applications. Because they
are classical algorithms that can be implemented in soft-
ware, they are generally quite fast and produce bits with
high throughput [1]. The predictability can additionally
be a benefit when reproducibility is a desired feature,
such as while testing and debugging systems.

On the other hand, hardware RNGs are often held
as the “gold standard” for randomness. These devices
are based off an unpredictable physical process, either
classical or quantum. For example, classical randomness
sources include white noise or clock drift in circuits, the
timing of past events (e.g. the last time a disk operation
took place), or user inputs (e.g. key-strokes or mouse mo-
tion) [1,4]. Quantum RNGS (QRNGs) work off the prin-
ciple that quantum mechanics at its core is random, and
in fact have a long history, with the earliest ones demon-
strated around the mid-20th century by means of mea-
sured nuclear decays [5]. Briefly, Geiger-Mueller (GM)
tubes are used to count β decays, i.e. emitted electrons,
emitted from some radioactive source. Each decay event
is independent from the others and thus the number of
clicks in a given time period can be described by a Pois-

son distribution, i.e. Pm(T ) = (λT )m

m! e−λT , where m is
the number of pulses detected, T is the observation time,
and lambda is the average decay rate and characterizes
the Poisson distribution. Random numbers can then be
produced by recording the state of a modulo-M electronic
counter every time the GM tube registers a detection.

QRNGs have evolved since then, and with recent ad-
vances in the field of quantum optics, many now operate
using quantum states of light without need of handling
radioactive materials. In fact, photons in a coherent state
(roughly, the most “classical” of the quantum states of
light, e.g. a laser beam) follow Poissonian statistics [6],
and so conceivably a time-of-arrival method similar to
those for nuclear decays can be used for RNG. Single pho-
tons can also be used quite straightforwardly, by send-
ing them into either a 50:50 beamsplitter or a polarizing
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beamsplitter [7]. The photon then has a 50% chance of
being in either output arm of the beamsplitter, and clicks
on the corresponding detectors can be processed as “0”
or “1”. As it is, RNGs based off measuring quantum
physical processes are one of the most mature quantum
technologies, with multiple commercial products avail-
able on the market.

The challenge is that is difficult to ascertain how ran-
dom these sources actually are, and thus they are gen-
erally considered “weak,” or imperfect [4, 8]. Indeed,
while various suites of statistical tests can be used to look
for certain patterns in RNG outputs, numerous modern
PRNGs, including the Mersenne Twister, will pass ev-
ery single statistical test and successfully masquerade as
true random [1]. More fundamentally, any system that
can be described by classical physics, even a chaotic one,
is in principle deterministic. Any apparent randomness
is then an artifact of an incomplete model [9]. QNRGs
might seem an appealing alternative in this case, given
that we trust that quantum physics is fundamentally ran-
dom. In fact, generating random bits seems trivial; sim-
ply prepare a qubit in a Hadamard basis state |+〉 or |−〉,
and measure in the computational basis {|0〉 , |1〉}. How-
ever, the simple reality is that in any real-life scenario,
there will always be noise, human error, and calibration
variability that sullies the pure randomness of quantum
mechanics, not to mention the possibility that an ad-
versary has somehow corrupted the device to provide a
cryptographic backdoor [9].

This brings us to the field of certifiable randomness,
which has seen several key advances in the past decade.
Certifiable randomness is the idea that one can prove
that an output sequence of numbers is close to statis-
tically random, usually given a few weak (i.e. general)
assumptions. Generally, protocols that generate certi-
fiable randomness are tied to the probabilistic nature
of quantum mechanics and involve some form of a sta-
tistical or cryptographic test that a quantum computer
can pass while a classical computer cannot [9-12]. The
natural starting point for this field correspondingly was
so-called Einstein-certified randomness, where violations
of Bell’s inequality certify random numbers, bar the as-
sumption of non-interaction [9-11]. More recently, the
assumed hardness of learning with errors (LWE) was
used to develop a protocol that performs cryptographic
certification, as well as test that a computer is indeed
acting quantum [12]. Finally, very recently it has been
suggested that sampling problems used to demonstrate
quantum supremacy can also be used to generate cer-
tified randomness [13-15]. So far, only Einstein-certified
RNG has been implemented experimentally, although the
bit generation rate is notably limited [9,11]. It remains
an open problem to develop devices that implement the
other forms of certifications, as well as develop proto-
cols that can maintain throughputs comparable to typi-
cal PRNGs and large entropy in/entropy out ratios.

II. TECHNICAL CONTENT

In this section we will review in greater detail the three
aforementioned paths toward certifiable randomness: 1)
Einstein-certification, 2) cryptographic certification, and
3) quantum supremacy. Key concepts to many of these
include entropy and randomness extractors.

Entropy: Entropy has many definitions, but in general
is a mathematical measure of disorder or randomness
[1, 4]. Higher entropies imply a greater degree of
randomness than lower entropies. We will discuss
information entropy here, although this is closely related
to thermodynamic entropy.

Definition 1 (Shannon entropy). For a ran-
dom variable X with support S, where the support is
S = {x : P (X = x) > 0 }, the Shannon entropy of X is
defined as:

H(X) = −
∑
x∈S

P (X = x) log2 P (X = x)

Shannon entropy roughly corresponds to the number
of bits of information in each outcome. A uniform
distribution over {0, 1}N has Shannon entropy N, since
each outcome is equally likely and thus has the maximal
amount of randomness.

Definition 2 (Renyi entropy). Renyi entropy is
a generalization of Shannon entropy, defined as

Hα(X) =
1

1− α
log2

∑
x∈S

P (X = x)α

where α is the order. Renyi entropy becomes Shannon
entropy for α = 1.

Definition 3 (min-entropy). Min-entropy is de-
fined as

H∞(X) = lim
α→∞

Hα(X) = − log2 max
x∈S

P (X = x)

Note that min-entropy determines the max number of
uniform bits that can be extracted from a distribution,
i.e. given min-entropy k, the probability of each outcome
is bounded by P (X = x) ≤ 1/2k and thus at most k
random bits can be extracted. It turns that this is only
a necessary condition to extract k bits, rather than a
sufficient one [4].

Randomness Extractors: In general, samples from
weakly random sources such as those detailed above
do not necessarily follow a uniform distribution [8].
Randomness extractors are algorithms that take the
outputs of weakly random sources and extract a se-
quence of uniformly (or nearly uniformly) distributed
random bits. As a simple example of a randomness
extractor, von Neumann showed that if you have a
Bernoulli sequence with success probability p, then you



3

can convert it into a uniform sequence by exploiting
the fact that P (10) = P (01) = p(1 − p). Specifically,
the procedure is as follows: split the sequence into
consecutive, non-overlapping pairs of bits. Discard ‘00’
and ‘11’, and map ‘01’ to 0 and ‘10’ to 1 [16].

A. Einstein-Certified Randomness

Bell’s Theorem and the CHSH Game: Bell famously
proved that quantum mechanics and local hidden vari-
able theories are incompatible, providing an experi-
ment where quantum mechanics predicts correlations
that would violate the constraints suggested by local hid-
den variables [17]. The CHSH game is a variant of this
experiment, illustrated in Figure 1 [10, 18]. Two par-
ties, Alice and Bob, are given challenge bits x and y
respectively, chosen uniformly at random, and want to
produce a and b, respectively, such that x+ y = xy Alice
and Bob do not communicate during the game, although
they can collaborate on a strategy beforehand. The clas-
sical strategy is to pick a=b=0 each time, which has win
probability 75%. The quantum strategy is for Alice and
Bob to share an EPR pair (|00〉 + |11〉)/

√
2, and mea-

sure in different bases depending on the challenge bit
they get. Specifically, Alice measures in the computa-
tional basis if x = 0, and the Hadamard if x = 1; Bob
measures in the |+π/8〉 basis if x = 0 and the |−π/8〉
basis if x = 1, where |+π/8〉 = cos(π/8) |0〉+ sin(π/8) |1〉
and |−π/8〉 follows similarly. Following this strategy, Al-
ice and Bob win cos2(π/8) ≈ 85% of the time, which
turns out to be the optimum strategy via Tsirelson’s In-
equality [19]. These results imply that if one plays the
CHSH game while operating in the “quantum regime”
where 0.75 < PCHSH < 0.85, then the output bits
(a, b) must have some randomness, given the general as-
sumption that Alice and Bob are not communicating.
This randomness is not necessarily uniformly distributed,
and thus the results of the CHSH game have to be run
through a randomness extractor [9-11]. Note that two
uniformly random bits (x, y) were inputted to get two
nonuniformly random bits (a, b) out, resulting in a net
loss of entropy.

The solution is to perform some of random expan-
sion. In one of the first experimental demonstrations of
an Einstein-certified RNG, Pironio et al. noted that it
is not actually necessary that the challenge bits be se-
lected uniformly at random; rather, for a large number
of runs n, one can select one of the d2 input pairs (x, y)
with probability 1− (d2 − 1)q and the other d2 − 1 with
probability q, for small q [9]. Using this technique, ap-
proximately quadratic expansion can be achieved where
a length O(

√
n log2

√
n) seed results in a O(n) entropy

output. Roughly, even though most of the challenge bits
are the same, because the process is still random, Alice
and Bob cannot predict when the challenges will change
and thus cannot use local hidden variables to “cheat.”
Formally, Pironio et al. quantify the Bell inequality vi-

olation using the CHSH correlation function I and its
corresponding estimator Î

I =
∑
x,y

(−1)xy[P (a = b|xy)− P (a 6= b|xy)] (1)

Î =
1

n

∑
x,y

(−1)xy
[N(a = b|xy)−N(a 6= b|xy)]

P (xy)
(2)

where P (ab|xy) are conditional probabilities and
N(ab, xy) are measurement counts. For large n, the con-
ditional probabilities and thus the CHSH correlation I
can be estimated even for a highly nonuniform distribu-
tion of (x, y) challenges. The correlation estimator, in
conjunction with a statistical parameter δ can then be
used to bound the min-entropy H∞ ≥ nf(Î − ε) with
probability > 1 − δ, where ε is determined by δ and the
function f from numerical methods [9].

Later work by Vazirani & Vidick went on to further
improve randomness efficiency and achieve exponential
randomness expansion [10]. Similar to Pironio et al.,
they use nonuniformly distributed challenges (x, y) to
save on randomness. Specifically, to achieve n bits of
randomness with “security parameter” ε > 0, inputs are
blocked off into m blocks of k input pairs (x, y), where
m = C(n log 1

ε ), C > 1 and k = 10 log2(n). Each block

only contains one possible input pair, with 103 log 1
ε ran-

dom blocks chosen to contain one of the possible input
pairs uniformly at random, and the rest chosen to con-
tain (0, 0). If in every block the CHSH game is won for
at least 84% of the inputs, then the protocol succeeds
and O(n) bits of randomness are produced from a seed
of length O(log n log 1

ε ) [10].
Einstein-certified randomness is of particular interest

since it has been implemented experimentally. In Piro-
nio et al’s implementation, they employed two entan-
gled atoms to obtain > 42 random bits from n = 3, 016
trials [9]. Later experiments have expanded to include
loophole-free Bell tests and other quantum systems such
as photons, with one obtaining 1, 024 random bits from
a seed of length d = 315, 844 [11].

B. Cryptographically-Certified Randomness

Trapdoor Claw-Free Functions (TCF): This is a family
of 2-to-1 functions f : {0, 1}n → {0, 1}m that possess
the following properties: 1) f is efficiently computable
classically, 2) for a “claw” (x1, x2, y) where x1 6= x2 and
f(x1 = f(x2) = y, given a trapdoor it is possible to
compute (x1, x2) efficiently from y with a classical com-
puter, and 3) without the trapdoor, it is intractable for
a quantum computer to compute the claw [12].

The drawback of Einstein-certified randomness is that
it is limited to Bell test situations where entanglement is
shared across multiple noncommunicating parties. Brak-
erski et al. got around this by constructing a “post-
quantum noisy TCF” (NTCF) family of functions that
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FIG. 1. Diagram of the CHSH Game. A) Schematic of the CHSH game with players Alice and Bob. B) Experimental realization
of the CHSH game, using a loophole-free Bell experiment characterized by high-efficiency detectors and space-like separation.
Adapted from reference [11].

builds off the conjectured hardness of learning with er-
rors (LWE), a computation problem which seeks to infer
a close approximation of a function f : Znq → Zq from
samples (x, y) such that x ∈ Znq , y ∈ Zq [12]. Specifically,
they define a “single round test” of quantumness which
consists of two stages: 1) a classical computer, which has
knowledge of the trapdoor, sends over a quantum circuit
describing the NTCF and queries the quantum computer
for a random y = f(x1) = f(x2) and then 2) asks the
quantum computer to either produce x1 or x2 (a random
preimage of y), or to produce d : d · (x1 + x2) = 0. This
scheme is illustrated in Figure 2. By definition of the
TCF, the classical computer can efficiently verify either
of these outputs. The first step can be easily done by
creating a uniform superposition over all inputs, acting
the provided quantum circuit on them, and then mea-
suring the output bits which will collapse the inputs to
the relevant preimage 1√

2
(|x1〉 + |x2〉). If this is mea-

sured in the computational basis, then the quantum com-
puter will produce x1 or x2 uniformly at random, thus
providing random bits. If measured in the Hadamard
basis, this will produce the an “adaptive hardcore bit”
d : d · (x1 + x2) = 0. The adaptive hardcore bit has the
important property that it is intractable to sample from
any distribution on (y, x, d, b) and obtain values that sat-
isfy the conditions f(x) = y and b = d · (x + x′) with
probability ≥ 1

2 + ε, where ε is not necessarily negligible.
Passing the single round test then implies that the device
must have measured and collapsed at least one qubit in
superposition (roughly, a qubit has to have been initial-
ized to |+〉 and measured), and thus the device must be
quantum lest there be an efficient way to compute claws
[12].

The randomness protocol is then as follows: 1) Use a
classical computer to request new preimages for some y
to generate nearly uniform random bits, 2) to check for

FIG. 2. Diagram of Certified Random Number Generation
using Cryptographic Tests. The classical verifier sends one of
two challenges to an untrusted quantum prover, known as a
single-round test. The quantum prover can efficiently calcu-
late both types of challenges, but cannot efficiently calculate
the “claw” of the trapdoor-free claw function without knowl-
edge of the trapdoor the classical verifier possesses. As a re-
sult, the result of one of the challenges must be near uniform
random bits.

quantumness, occasionally inserts random requests for d
instead, and 3) if that test passes, refresh the pseudoran-
dom key used for the NTCF as a security precaution. In
terms of randomness expansion, this method can obtain
different degrees of expansion depending on how general
of an assumption is made about the hardness of their
version of LWE. If the hardness assumption is weak and
only says that it is hard for polynomial-sized quantum
circuits, then O(N ε), ε > 0 bits are required to generate
O(N) nearly uniform bits. For a strong hardness as-
sumption that LWE is hard for sub-exponentially sized
quantum circuits, then this can be improved to O(N)
bits from poly logN bits [12].
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C. Quantum Supremacy

Random Circuit Sampling: Random circuit sampling is
the task of (pseudo)randomly generating a n-qubit quan-
tum circuit using gates from a universal gate set, acting
these on |0〉n, and sampling from the probability distri-
bution of output bitstrings [20]. The distribution of the
probabilities p = | 〈s〉ψ|2, defined as the probability of
measuring out bitstring s from a state |ψ〉, where |ψ〉 is
chosen uniformly at random from Hilbert space of size
N = 2n, is given by

P (p) = (N − 1)(1− p)N−2 ⇒ Ne−Np (3)

for large N . This is sometimes called the Porter-Thomas
distribution and is characteristic of quantum chaos [20].
It has been argued that simulating this task classically
would take exponential overhead, thus making it a
strong candidate for demonstrating quantum supremacy.

Heavy Output Generation (HOG): HOG is a rela-
tion problem proposed by Aaronson & Chen that is
conjectured to be exponentially hard for a classical
computer [14]. It states: Given a random n-qubit
quantum circuit C, generate output strings s1 . . . sk, at
least 2/3 of which are heavy for C. A bitstring is heavy
if it has a probability greater than the median of C’s
distribution, i.e. P (s) > med{probList(C |0〉n)}. HOG
can be easily solved on a quantum computer by simply
running random circuit sampling with C and collecting
k samples [14]. In essence, the test indicates that no
classical computer can generate the same amount of
entropy that random circuit sampling does in a compa-
rable time. This is a particularly remarkable result in
that it talks directly about the outputs of a sampling
problem, as opposed to the process and corresponding
distribution by which the samples are generated, which
is nominally the source of quantum supremacy.

Aaronson very recently suggested that this can be used
to expand upon Google’s quantum supremacy experi-
ment and generate verifiable randomness from moder-
ately sized quantum computers ( 50-100 qubits) [13-15].
The outline of the proposal is then as follows: 1) Use a
trusted classical computer to pseudorandomly generate
quantum circuits C1 . . . CM , 2) perform random circuit
sampling on those circuits, which should return a list of
k samples S = (s1 . . . sk) from the distribution Ci |0〉n,
3) check for high entropy in the output bitstrings using
HOG (only for a few randomly chosen iterations), and
4) if the statistical tests pass, feed the output bitstrings
S = (S1 . . . SM ) to a randomness extractor. This proto-
col is illustrated in Figure 3. Note that since the HOG
verification takes place on a classical computer, this pro-
tocol would only work for moderately sized systems be-
fore the computation takes too long [14,15].

FIG. 3. Proposal for Certified Random Number Generation
from Quantum Supremacy. A pseudorandom seed from a
classical computer can be used to generate random circuits.
A quantum device performs a task such as random circuit
sampling and sends the output to a classical computer. The
classical computer verifies the randomness and uses the high-
entropy output to seed a classical randomness extractor.

III. DISCUSSION

Which of these methods of certifiable randomness is
best? To determine this, we have to consider multiple
criteria, including the near-term feasibility, the bit rates,
and the degree of randomness expansion, i.e. entropy
in to entropy out. It is interesting that while Einstein-
certified randomness as of now is the only method to
have been experimentally implemented, its practicality
outlook is the poorest. As noted by Brakerski et al.,
Einstein-certified randomness is quite limited to situa-
tions where entanglement is being shared. It is also worth
noting that in the work of Pironio et al., the 3,016 runs re-
quired to extract 42 bits of true randomness took around
a month to complete [9]. The degree of expansion was
additionally limited since they picked challenge bits from
a uniform distribution, in order to simplify the experi-
mental setup [9]. Later “loophole-free” experiments have
made similar simplifications, which speaks to the fact
that in general, Bell tests require complex setups and
expensive equipment [11]. If desired for practical ap-
plications, future work should consider implementing the
protocol of Vazirani & Vidick in order to achieve testable
exponential randomness expansion.

In comparison, certified randomness from crypto-
graphic testing and quantum supremacy both appear to
offer more appealing outlooks. In terms of randomness
expansion, cryptographic certification in the best case
could theoretically offer exponential expansion, compa-
rable to that of Einstein certification [12]. In terms of
throughput however, the question becomes more compli-
cated. As an illustration, Google’s Sycamore supercon-
ducting processor is claimed to have taken three minutes
to sample one instance of a quantum circuit a million
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times, so one might infer that the bit generation rate
should be reasonable [13]. However, a major limiting fac-
tor is in fact the HOG statistical test used to verify the
high-entropic outputs of random circuit sampling. For
50-100 qubits the overhead is reasonable, but above that
threshold this protocol becomes intractable for classical
supercomputers [14-15]. Cryptographic certification has
the potential to be faster (no randomness extractor or
HOG needed!), but only becomes practical with qubit
counts in the hundreds to thousands. Indeed, Brakerski
et al. estimated 2,000 qubits would be needed for 50 bits
of security [12]. One can imagine that certifiable random-
ness from quantum supremacy can play an intermediate
role as qubit numbers scale, before cryptographic certi-
fication takes over. In fact, this appears to be the case,
with certifiable randomness likely to be Google’s next big
experiment [13].

IV. CONCLUSION

In conclusion, we have provided an overview of recent
progress in the field of random number generation. While

for many applications pseudo-random generators are suf-
ficient, it is of particular cryptographic and scientific in-
terest to be able to produce numbers that can be “cer-
tified” random. Proof of randomness is usually achieved
using probabilistic tests that only quantum computers
can achieve, tying certification to the inherent random-
ness of quantum mechanics. The first protocols devel-
oped and experimentally demonstrated in this field were
based off Bell tests of nonlocality, providing truly ran-
dom bits at relatively low generation rates. Future exper-
imental work might involve proposals based off crypto-
graphic tests or quantum supremacy, which have promise
to be more practical in terms of experimental setup, bit
throughput, and randomness expansion. We predict that
the quantum supremacy proposal is likely to take off in
the near term.
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