Dis 1D Notes
Thursday, June 25, 2020 12:53 PM
·
We are learning how to solve
Liff egns of the formi
$\frac{dx(t)}{dt} + ax(t) = b(t)$ $b(t) = 0 \qquad (no input)$
J. Francisco
Cases 30 Val
() $b(t) = 0$ (no injut)
$\frac{dx(t)}{dt} + ax(t) = 0$
THE TAXITION
Sulutions Xh(t) are known as
homogeneans solutions.
(2) b(+) = b = const,
$\frac{dx(t)}{dt} + ctx(t) = b$
Why do we care about $\chi_h(t)?$
Dupperse we find any perhicular
) J

Solition xp(H) What solves M.

$$\frac{dx}{dt} + \alpha xp(t) = b$$

Note done

 $\frac{d}{dt} + \alpha xp(t) = b$
 $\frac{d}{dt} + \alpha xp(t) + xp(t) = b$
 $\frac{d}{dt} + xp(t) + xp(t) = b$
 $\frac{d}{dt} + xp(t) + xp(t) = b$
 $\frac{d}{dt} + xp(t) + xp(t) + xp(t) = b$
 $\frac{d}{dt} + xp(t) + xp(t) + xp(t) + xp(t) = b$
 $\frac{d}{dt} + xp(t) + xp(t) + xp(t) + xp(t) = b$
 $\frac{d}{dt} + xp(t) + xp($

X= Cleat Proof 2: Gruss and chock
(~linear algebra) linear dxh(t)

operator

dxh(t)

- ax(t)

eigenvalue

xh

- axh In both cases the solution is not unique!

Roasni C' could be any const

Add additional constraint; initial conditions $X(6) = X_0$ $X_{h}(1) - X_{v}e^{-at}$ $X_{h}(1) - X_{v}e^{-at}$ xh(6) = (| e 0 = (| = xx

$$\frac{d}{dt} + \alpha \frac{d}{q} = 0 + b = b$$

$$\frac{d}{dt} + \alpha \frac{d}{q} = 0 + b = b$$

$$\frac{d}{dt} = 0 + b = b$$

$$\frac{d}{dt} = -at$$

$$\frac{d}{dt} = -at$$

$$\frac{d}{dt} = -at$$

$$\frac{d}{dt} = -at$$

$$\frac{d}{dt} = -a(x - b)$$

$$\frac{d}{dt$$

eigenvalue or homogeneous ego

$$\begin{array}{lll}
x(t) = (-at) & -at \\
x - \frac{b}{a} = (-e^{-at}) & -at \\
x + \frac{b}{a} + (-e^{-at}) & -at \\
x(t) = x_0 & -at \\$$

Why 50 many methods! 1) Many ways to lack at
the same problem!
2) Pick whirherer makes, the
most sense to you! > pop up + 11 the -(ah engineering, physica) sciences)

Dis 1D Worksheet

Thursday, June 25, 2020 12:53 PM

1 RC Circuits

In this problem, we will be using differential equations to find the voltage across a capacitor over time in an RC circuit. We set up our problem by first defining three functions over time: I(t) is the current at time t, V(t) is the voltage across the circuit at time t, and $V_o(t)$ is the

voltage across the capacitor at time t. Recall from 16A that the voltage across a resistor is defined as $V_R = RI_R$ where I_R is the current across the resistor. Also, recall that the voltage across a capacitor is defined as $V_o = \frac{Q}{C}$ where Q is the charge across the capacitor.

Figure 1: Example Circuit

a) First, find an equation that relates the current across the capacitor I(t) with the voltage across the capacitor $V_C(t)$.

b) Write a system of equations that relates the functions I(t), $V_{\mathbb{C}}(t)$, and V(t).

c) Rewrite the previous equation in part (b) in the form of a differential equation involving only $V_C(t)$ and V(t).

$$I(t) = C \frac{dV_{c}(t)}{dt}$$

$$V(t) = RC \frac{dV_{c}(t)}{dt} + V_{c}(t)$$

$$\frac{dx}{dt} = -\alpha x(t) + b(t)$$

d) Let's suppose that at t=0, the capacitor is charged to a voltage V_{DD} ($V_{C}(0)=V_{DD}$). Let's also assume that V(t)=0 for all $t\geq 0$. Solve the differential equation for $V_{C}(t)$ for $t\geq 0$.

$$\frac{dV_{c}(t)}{dt} = -\frac{1}{RC}V_{c}(t)$$

$$\Rightarrow Gruss and Joch i$$

$$V_{c}(t) = V_{c}(6)e^{-\frac{1}{RC}}V_{c}(1)$$

$$\frac{dV_{c}}{dt} = V_{c}(8)x - \frac{1}{RC}e^{-\frac{1}{RC}}V_{c}(1)$$

Initial condition:
$$V_{c}(0) = 0$$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = 0 = V_{DD} + A = \sqrt{RC}$
 $V_{c}(0) = V_$

b) Now let's suppose that at t=0, the capacitor is uncharged $(V_c(0)=0)$ and that $V(t)=V_{DD}$ for all $t\geq 0$. Plot the response $V_c(t)$.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\$

To better understand our responses, we now define a time constant which is a measure of how long it takes for the capacitor to charge or discharge. Mathematically, we define τ as the time at which $V_C(\tau)$ is $\frac{1}{\ell}=36.8\%$ away from its steady state value.

Figure 5: Different values of capacitor voltage at different times, relative to τ .

c) Suppose that $V_{DD} = 5 \text{ V}$, $R = 100 \Omega$, and $C = 10 \mu\text{F}$. What is the time constant τ for

T = R(= 100 & > 10 mf = 1000 MS = from Dur Steady

1, I, 36.8% of final value
36.8% of initial
36.8% of initial t 737 ST o/ & from 63 % 95% 95% How long 15 "long enough"? To vatural times cale $\frac{1}{1-e^{-t/\tau}} = \frac{1}{1-e^{-t/\tau}} = \frac{1}{1-e^{-$

d) Going back to part (b), on what order of magnitude of time (nanoseconds, milliseconds, 10's of seconds, etc.) does this circuit settle ($V_{\rm c}$ is >95% of its value as $t\to\infty$)?

T= | ms - > older of magnitude
is ms

explicitly: 3t = 3 ms

 e) Give 2 ways to reduce the settling time of the circuit if we are allowed to change one component in the circuit.

reduce ?

Which one is bother?

HW1, Q5

f) Suppose we have a source V(t) that alternates between 0 and $V_{DD}=1\,\rm V$. Given $RC=0.1\,\rm s$, plot the response $V_{\rm c}$ if $V_{\rm c}(0)=0$.

て、って、?

T= 8.15

ΔT=15=107

Xtol model.

g) Now suppose we have the same source V(t) but RC = 1 s, plot the response V_c if $V_c(0) = 0$.

$$V_{c}(T) = V_{D0}(1-\frac{1}{e})$$