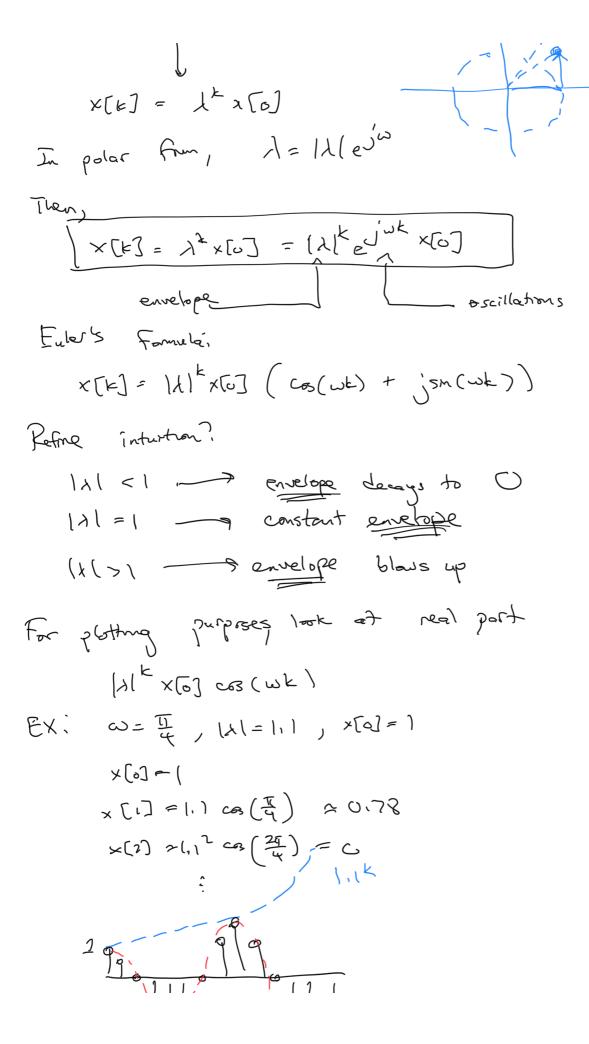
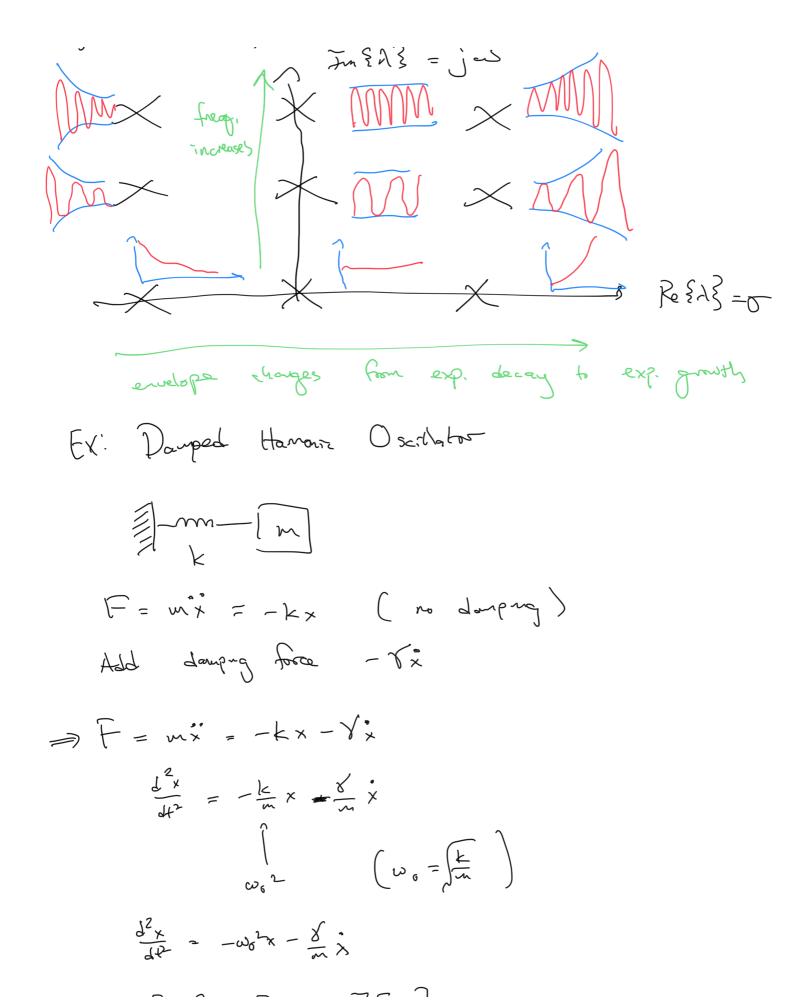
Discussion 6C

transvert Behavior and Feed back Control
Frankrents - Predicting Behavior from Eigenvalues
-CT
* Feedback Control
J. Transcents
a) Discrete Time
XXX Re
What do we expect?
From statisty analysis
1x1<1 -> Stable, decays to O
(x1=1 - maiginally stable: w/ O rispet, Stags the same place
(1)>1 unstable, "blows up"
Consider the case u=0 (free response)
x[k+1] = 1x[k] + bulk]



- (1.1 E) Look at this more of Q1 What do we expect? Re EL3 < 0 - Stable, decays to 0 Re Ex3 =0 - marginally stable: w/ O imput, should stay at the some place " Re Ed 3 > 0 - sunstable, 61 ms up Same thing: u=0 1x = /x(+) x(t) = x(0) = >+ Let's look at 2 m Caresian form, λ= σ+jω; σ,ω∈ R (x(t) = x(0) e of ev'ut

Oscillations envelope Euler's famula, x(4) = x(0)e of (og (wt) + jsm (wt)) Refore intuition. Re EX } < 0 > exponentially decorying envelope Re \(\frac{2}{3} \) = 0 \rightarrow constant envelope Re { } } > 0 - 3 exp. growney envelope Ex: 0= In 1.1 $\omega = \frac{\pi}{4}$ X(0)=) Then, x(t)= elali)+ ejät > 1.1 t = jat Part: hit cos (Tet) Look at the real For an extensive plat of example transi navetours for each pessible eigentille location lec/22,724 notes



Find enquireless to predict how component values affect transmit between.

Let
$$\begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} = \lambda(\lambda^{2} \frac{1}{2}) + \omega_{0}^{2} = 0$$

Conditate formula:

 $\lambda = -\frac{1}{2} + \sqrt{\frac{1}{2}} - \omega_{0}^{2} = \sqrt{\frac{1}{2}} + \sqrt{\frac{1}{2}} + \sqrt{\frac{1}{2}} = 0$

If $\sum_{n} > \omega_{0}$, $\sum_{n=1}^{\infty} \frac{1}{2} - \omega_{0}^{2} = 2$
 $\sum_{n=1}^{\infty} \frac{1}{2} = \frac{1}{$

 \sim

underdamped response

Look Canthas?

RLC CK+

 $\lambda = -\frac{R}{2L} \pm \sqrt{\frac{R}{2L}^2 - \frac{1}{LL}} = -\frac{R}{2L} \pm \sqrt{\frac{R}{2L}^2 - \omega_0^2}$

ω, 2= 1c

Compare to ;

 $\chi = -\frac{1}{2m} \pm \sqrt{\left(\frac{5}{2m}\right)^2 - \omega_6^2}$

L 2 m

D ~

c --->//E

Feedback Control

Mechanical

- Electrical

Analogy

Op-Amps: Vin to A Vant

Similarly feed output back into the injust

= Ck+1] = A=Ck] + Buck]
"Fredback Control policy": [LE] = - Kit[L]
FRECT = AFRICE]
$\sqrt{\chi(m)} = (A-BK) \times CK$ A_{cl}
· Use for eigenvalve placement
It controllable gnaranteed that you can place equivalues anywhere we appropriate K
Open-loop us closed-loop control? Open-loop: u[k] & f(x(k))
Og-Am? Vont -100p
Sm to Sont closed -100p
Open loop control. Pick u(a), u(i) u(k-1)
S.T. x[k] = A = [0] + A = 13 à [0]

- ABT [k-2] Util independent of outputs + BGCKAT at each the step Closed loop control? U[c] dependent on outputs at each time step Open 100p + Optimal control La min energy weighted min energy - How to assign k values? Match coefficients of Lowed chas, poly. X 1 6 XACK) EX: 2×2 A= [0], R= [K, K2] $A_{cl} = A - B(C) = \begin{bmatrix} 0 & 1 \\ 2-k_1 & 3-k_2 \end{bmatrix}$

V = 1 - 1

(2) Eigenvalue Placement in DT
$$\overline{x}[t+1] = \begin{bmatrix} 0 & 1 \\ 2 & -1 \end{bmatrix} \overline{x}[t] + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u[t] + \overline{w}[t]$$

if not full rank, then det & = 0

$$\frac{1}{2} \left(-\frac{1}{2} \right) = \lambda (\lambda + 1) - 2 = \lambda^{2} + \lambda - 2$$
$$= (\lambda + 2) (\lambda - 1)$$

Not stable, ble
$$|k_1| > 1$$
 (DT)

Constal? $|k_1| = |k_1| = |k_1| = |k_2| = |k_1| = |k_1| = |k_2| = |k_1| = |$

$$k_2 = -\frac{11}{8}, k_1 = 1$$

$$\left[X = \left[1 - \frac{11}{8} \right] \right]$$

e)
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $u(t)$ $\rightarrow \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $u(t)$

$$A = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$$

Controlable?

$$\begin{cases}
A_{el} = A + BK = A + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{cases} k_1 & k_2 \end{bmatrix} \\
k_1 & k_2 \end{cases}$$

$$= \begin{bmatrix} k_1 & 1 + k_2 \\ 2 + k_1 & -1 + k_2 \end{bmatrix}$$

$$\frac{det}{2+k_1} \left[\frac{k_1 - \lambda}{2+k_1} - \frac{1+k_2 - \lambda}{2+k_1} \right] = (k_1 - \lambda) (k_2 - 1 - \lambda) - (k_1 + 2)(k_2 + 1)$$

$$= k_1 k_2 - k_1 - k_1 \lambda - k_2 \lambda + \lambda + \lambda^2 - k_1 k_2 - k_1 - 2k_2 \lambda - k_1$$

$$= \lambda^{2} + \left(\left(-k_{1} - k_{2} \right) \lambda - 2 \left(1 + k_{1} + k_{2} \right) \right)$$

$$Note that - \left(\left(1 + k_{1} + k_{2} \right) \times 2 = -2 \left(1 + k_{1} + k_{2} \right)$$

$$- \left(\left(1 + k_{1} + k_{2} \right) + 2 = 1 - k_{1} - k_{2} \right)$$

= (1+2) (1-(1+k, +k2)) = 0 $\lambda_1 = 2$, $\lambda_2 = 1 + k_1 + k_2$ Fixed: $|\lambda_1| > 1$ \implies unstable

Will go over Q1,Q3 tomorrow