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Discussion 1A notes for students taking EECS 16B during Summer Sessions 2020. Topics in-
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Kirchoff’s Current Law (KCL), nodal analysis, equivalent resistance, equivalent capacitance, and
Thevenin/Norton equivalence.

I. LOGISTICS

A. About Me

TA: Matthew (Matt) Yeh
Email: myeh@berkeley.edu
Discussion: M-Th, 1-3pm PST (LOST section)
OH: Mondays, 5-6pm PST
Website: mudyeh.github.io/teaching/ee16b/su20
Slack channel: ee16bsummer2020.slack.com; join the
channel #1pm-discussion, which we will be using for
polling during discussion. I will also post my notes after
the discussion in the channel, although since Slack has a
tendency to delete files after a certain time, for posterity
I will also post my notes on my website (linked above).

B. LOST Section

Note that LOST section is two hours long instead of
the normal one. This way, we have more time to go over
the worksheet in all the conceptual depth it deserves.
I’m hoping that these sections will be heavily student-
driven, i.e. your questions drive the flow of the section
so that together, we can solidify conceptual foundations
for anyone feeling shaky about the material. If we end
up not using the full two hours for the worksheet, I plan
on using the extra time for bonus content, which might
take the form of extra practice problems (in-scope) or fun
extensions of the material beyond 16B (out-of-scope).

C. Homework

There is a homework this week. It will be five problems
plus a ”find a group” problem.

Homeworks are on a Monday to Tuesday schedule, i.e.
they are assigned on Monday and due on Tuesday (8 days
later). See Piazza for the specific details. Self-grades are
on a Wednesday to Tuesday schedule. Don’t forget to do
them!

Finally, Homework Party is every Friday, from 1-5pm
PST. I highly recommend going to the HW Parties, as
they are a great place to get help as well as meet some
of your fellow students.

II. SELECTED LINEAR ALGEBRA REVIEW

A. Vector Spaces and Subspaces

Definition 1 (Vector Space). A vector space V over a
field F is a set of vectors along with two operations, scalar
multiplication and vector addition. They must obey the
following ten properties:

• Associativity of Addition: ~u+(~v+ ~w) = (~u+~v)+ ~w
for ~u,~v ∈ V.

• Commutativity of Addition: ~u + ~v = ~v + ~u for
~u,~v, ~w ∈ V.

• Identity Element of Addition: ∃~0 ∈ V such that
~v +~0 = ~v for ~v ∈ V.

• Inverse Element of Addition: For any ~v ∈ V, ∃−~v ∈
V such that ~v + (−~v) = ~0.

• Closure under Vector Addition: For any two vec-
tors ~u,~v ∈ V, ~u+ ~v ∈ V.

• Associativity of Scalar Multiplication: α(β~v) =
(αβ)~v for α, β ∈ F.

• Identity Element of Scalar Multiplication: ∃1 ∈ F
such that 1~v = ~v for ~v ∈ V.

• Distributivity of Vector Addition: α(~u+~v) = α~u+
α~v for α ∈ F and ~u,~v ∈ V.

• Distributivity of Scalar Addition: (α+ β)~v = α~v+
β~v for α, β ∈ F and ~v ∈ V.

• Closure under Scalar Multiplication: For ~v ∈ V and
α ∈ F, α~v ∈ V.

Scalars are usually taken to be the set of real numbers
R or the set of complex numbers C.

Note: In section I briefly mentioned that vector
spaces have ten properties, but did not list them explic-
itly. Here they are!

A vector space is usually described as the span
of a set of basis vectors. Recall that the span of a set
of vectors is the set of all linear combinations of those
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vectors.

Definition 2 (Basis). A set of vectors {~b1, ~b2, . . . , ~bn}
is a basis for some vector space V if the vectors are all

linearly independent and V = span{~b1, ~b2, . . . , ~bn}.
Basis sets are not unique, although they all have the

same cardinality (number of elements). The cardinality
of a basis for a given vector space V is known as the
dimension of the vector space.

Often we are concerned with subsets of known vector
spaces. These are known as vector subspaces.

Definition 3 (Vector Subspace). A vector sub-
space W of a vector space V is a subset of V that obeys
the following three properties:

• Contains the zero vector ~0.

• Closure under scalar multiplication.

• Closure under vector addition.

There are four fundamental matrix subspaces we are
typically concerned with.

Definition 4.1 (Column Space). The column
space of a matrix A, sometimes denoted as C(A), is
defined as the span of the columns of A. That is, if | | . . . |

a1 a2 . . . an
| | . . . |


then the column space is given as C(A) =
span{ ~a1, ~a2, . . . , ~an}. Note that the columns do not
necessarily form a basis set, as they are not necessarily
linearly independent.

Definition 4.2 (Row Space). The row space of
a matrix A, sometimes denoted as R(A), is defined as
the span of the rows of A. Note that R(A) = C(AT ) by
definition of the transpose.

Definition 4.3 (Null Space). The null space of
a matrix A, sometimes denoted as N(A), is defined as

the set of all vectors ~v such that A~v = ~0.

Definition 4.4 (Left Null Space). The left null
space of a matrix A, sometimes denoted as N(AT ), is

defined as the set of all vectors ~w such that AT ~w = ~0.
The of a null space will come in handy in the next

section, when trying to find eigenvalues and eigenvectors
of a matrix.

B. Eigenvalues and Eigenvectors

The key equation regarding eigenvalues and eigenvec-
tors is:

A~v = λ~v

For this to be possible, A must be a square matrix. Nor-
mally, multiplying a vector by a square matrix scales and
rotates the vector, geometrically speaking. However, for
these special vectors we call eigenvectors, the matrix only
scales the vector!

Eigenvectors and eigenvalues find numerous applica-
tions in the physical sciences as well as engineering – for
example, in quantum mechanics, measurable values of
some observable (for example, position) are given by the
eigenvalues of the Hermitian operator that represents the
observable (not in scope). Throughout EE16B, you will
see eigenstuff pop up over and over and over again.

To solve for the eigenvalues and eigenvectors, we wish
to solve the above equation.

A~v = λ~v

A~v − λ~v = ~0

A~v − λI~v = ~0

The problem reduces to finding the set of all nontrivial
vectors ~v that send A−λI to 0! In other words, we wish
to find the null space of A− λI for some value of λ. But
which λ’s will work?

It turns out that a matrix M with a nontrivial null
space (i.e., more than just the ~0 vector) will satisfy the
equation

detM = 0

where det indicates the determinant. I will not go over
the specifics of calculating determinants in this note, but
in the end, if you take det(A − λI) = 0, you should end
up with a polynomial in λ known as a “characteristic
polynomial.” For example, consider the following matrix:

A =

[
1 1
0 1

]
We go through the motions:

det(A− λI) = det

[
1− λ 1

0 1− λ

]
(1− λ)2 − 0 = 0

λ = 1

In this case, it turns out we have a repeated eigenvalue of
λ = 1. In general, a nonrepeated eigenvalue will have one
associated eigenvector. However, repeated ones will have
up to the multiplicity of the eigenvalue. In the case that
the number of eigenvectors is less than the multiplicity,
we have a nondiagonalizable matrix.

Now we solve for the eigenvectors, which in this case
amounts to finding the null space of A− I.

(A− I)~v =

[
0 1
0 0

] [
v1
v2

]
= ~0

v1 = free variable

v2 = 0

Thus any multiple of ~v =
[
1 0

]T
is an eigenvector of A

with eigenvalue 1. A is nondiagonalizable!
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III. SELECTED CIRCUITS REVIEW

A. Basic Circuit Elements

In circuit analysis, we are primarily concerned with
currents and voltages. Thus, we identify each of the fol-
lowing circuit elements with its I-V relation.

1. Wire

−

+

VI

The IV relation is V = 0, I = anything, i.e. a
vertical line at V = 0 on an I-V graph. In other
words, no voltage is dropped across a wire.

2. Open Circuit

−

+
V

I

The IV relation is V = anything, I = 0, i.e. a
horizontal line at I = 0 on an I-V graph. In other
words, no current passes through an open circuit.

3. Voltage Source

−
+Vs

I −

+

V

The IV relation is V = Vs, I = anything, i.e. a
vertical line at V = Vs on an I-V graph. In other
words, an ideal voltage source will pass whatever
current it takes to maintain a voltage drop of Vs
across its terminals.

4. Current Source

Is

+

−

V

I

The IV relation is V = anything, I = Is, i.e. a
horizontal line at I = Is on an I-V graph. In other
words, an ideal current source will drop whatever
voltage it takes to maintain a current of Vs across
its terminals.

5. Resistor

R

−

+

V

I

The IV relation is V = IR, i.e. a line with slope
m = 1/R on an I-V graph. A short circuit can be
seen as the limit as a resistor goes to 0, and an open
circuit as the limit as a resistor goes to ∞.

6. Capacitor

C

−

+

V

I

The IV relation is I = C dVC

dt , where VC is the volt-
age across the capacitor and C is a constant known
as the capacitance. Specifically, C = Q

VC
, where Q

is the charge on the arbitrarily labelled “positive”
terminal, and VC is again the voltage across the ca-
pacitor. The energy stored on a capacitor is given

by U = 1
2CV

2
C = 1

2
Q2

C = 1
2QVC .

Throughout this discussion, we have followed passive
sign convention. According to passive sign convention,
positive current flows into the positive terminal and exits
out the negative terminal. This is akin to a river flowing
down a mountain, from high (gravitational) potential to
low (gravitational) potential.

The benefit of passive convention is that the sign of
power has a well-defined meaning. If P > 0, then the
element is dissipative. If P < 0, then the element is a
source and adds power into the circuit.

As a final note, in general the power consumed by an
element is given by P = IV . For a resistor, we can use

Ohm’s law to write two alternate expressions, P = V 2

R =

I2R.

B. KCL and Nodal Analysis

Kirchoff’s Current Law (KCL) follows from conserva-
tion of charge: at a junction,

Iin = Iout.

The nodal analysis method essentially uses KCL to solve
a circuit.

Procedure 1 (Nodal Analysis).

1. Pick a ground (reference) node.
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2. Label all remaining nodes in the circuit.

3. Label nodes and currents through each element.
Add (+) and (-) signs according to passive sign
convention.

4. Write KCL equations at each node.

5. Use I-V relations to write currents in terms of cir-
cuit elements (e.g. resistances, voltage sources,
etc).

6. Solve the system of equations using your favorite
method.

We now go through two examples. The first one will
illustrate passive sign convention, and the second will be
the famed voltage divider circuit.

Example 1

−
+Vs

i1

u1

R1

i2−

+

−

+

Let Vs = 5 V and R1 = 1 Ω. Use nodal analysis to solve
for the power dissipated or supplied by each element.

From the way we have labeled the polarities in the
figure, by passive sign convention both currents must be
going down. From KCL,

i1 + i2 = 0⇒ i1 = −i2

Because the voltage source is directly connected between
node u1 and ground,

u1 = Vs = 5 V

Thus,

i2 = −i1 = 5 V/1 Ω = 5 A

For the resistor,

P = IV = 25 W

For the voltage source,

P = IV = −25 W

As expected, the power of the voltage source is negative,
indicating that it is supplying power into the circuit
whereas the resistor is dissipating power. Moreover, the
sum of the powers is 0; this is from conservation of energy.

Example 2 (Voltage Divider)

−
+

VS

i1

R1

i2

R2

i3

−

+

V1

−

+

V3

−

+

V2

u1

u2

Find an expression for Vmid = u2 in terms of Vs, R1, R2.
KCL tells us:

i1 + i2 = 0

i2 = i3

In terms of node potentials and resistances:

u1 − u2
R1

=
u2 − 0

R2

u1 = Vs

u2 = Vmid

We get the potentially familiar expression,

Vmid = VS
R2

R1 +R2

C. Equivalence I: Series and Parallel Circuits

We say two circuits are equivalent if they have
the same I-V relation. Often we encounter circuit
elements that are said to be connected in series or in
parallel. It would be immensely helpful for simplifying
circuit analysis if we had some way to collapse these
configurations into a single equivalent element. In this
section, we will focus on resistors and capacitors.

Definition 5 (Series Circuit). Circuit compo-
nents are said to be connected in series if they are
connected along a single uninterrupted path. By KCL,
the same current flows through all elements in the series
connection.

Definition 6 (Parallel Circuit). Circuit compo-
nents are said to be connected in parallel if each
component is connected between the same set of nodes.
For two-terminal elements such as resistors, current
enters at the same node, splits between each branch, and
then recombines out the other node. By KVL, the same
voltage drop occurs across each element in the parallel
connection.

1. Series Resistors
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R1 R2 R3

Req =
∑
i

Ri

= R1 +R2 + . . .

2. Parallel Resistors

R2

R1

R3

Req = (
∑
i

1

Ri
)−1

= (
1

R1
+

1

R2
+ . . . )−1

For the case of two resistors, we define a “parallel
operator” ||, where R1||R2 = R1R2

R1+R2
. You should

check for yourself that this expression is the same
as what you would get from the gross “inverse of a
sum of inverses“ formula.

3. Series Capacitors

C1 C2 C3

Ceq = (
∑
i

1

Ci
)−1

= (
1

C1
+

1

C2
+ . . . )−1

4. Parallel Capacitors

C2

C1

C3

Ceq =
∑
i

Ci

= C1 + C2 + . . .

We can build some physical intuition here for why these
equations are as such. Consider the resistor equation
R = ρL

A , where ρ is the resistivity, L is the length, and
A is the cross-sectional area. If the resistors all have the
same dimensions, stacking a bunch of resistors in series
is like extending the length of one resistor – we expect
the resistance to increase. Correspondingly, stacking a
bunch of resistors in parallel is like widening one resistor,
increasing A – we expect the resistance to decrease.

Similar intuition can be applied to the case of capac-
itors, although in this case, the formulas have done a
bit of a switcheroo. Consider the parallel plate capaci-
tor equation C = εA

d , where ε is the permittivity, A is
the plate area, and d is the separation distance of the
plates. Stacking a bunch of capacitors in parallel is like
increasing the plate area of one capacitor, so we expect
more charge to be deposited per unit voltage – the capac-
itance increases. Likewise, stacking a bunch of capacitors
in series can be seen roughly as increasing the separation
distance – we expect the capacitance to decrease.

D. Equivalence II: Thevenin and Norton
Equivalent Circuits

Consider a linear circuit made up of only ideal voltage
sources, ideal current sources, and resistors. Suppose we
want to attach a load to some set of output terminals. It
would be nice if we could blackbox away the rest of the
circuit so that we don’t have to redo our complicated
analysis (KCL, KVL) each time we attach a different
load. This is the power of Thevenin’s theorem and its
dual, Norton’s Theorem.

Essentially, it can be shown that for such a linear cir-
cuit, the voltage is given by V = Veq − ReqI. This can
take the form of the Thevenin equivalent circuit using a
voltage source, or the Norton equivalent circuit using a
current source.

−
+

VTh

RTh I A

B

+

-

VAB
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INo

I

RNo

A

B

+

-

VAB

The I-V curve is given below:

slope=− 1
Req

(Veq,0)

(0,Ieq)

V

I

Notice that the V-intercept is given by (Veq, 0). What
circuit element has 0 current flowing through it? An
open circuit!

Likewise, the I-intercept is given by (0, Ieq = Veq/Req).
What circuit element has no voltage drop? A short cir-
cuit!

We use this graph to conclude that:

Veq = Vth = Voc

Ieq = Ino = ISC

Req = Rth = Rno =
Vth
Ino

Procedure 2 (Thevenin and Norton Equiva-
lents)

1. To find Vth, connect an open circuit across the ter-
minals of interest. Measure out Vout = Vth.

2. To find Ino, connect a short circuit across the ter-
minals of interest. Measure out Iout = Ino.

3. To find Rth = Rno:

(a) If you were able to find Ino and Vth, you are
done! Rth = Rno = Vth

Ino
. It is worth not-

ing that it is not always obvious how to ex-
tract both Ino and Vth. Moreover, to create

an equivalent circuit you really only need one
of {Ieq, Veq}, plus the resistance Req. Thus, in
general you should use the next method.

(b) Vtest − Itest Method: “Zero out” independent
sources (voltage source→ wire, current source
→ open circuit). Either apply a test voltage
Vtest into the terminal and measure out Itest,
or vice versa. Take the ratio Req = Vtest

Itest
.

The intuition behind why this method works
is that you are “seeing” the resistance a load
would see at the output.

Example 3 (Voltage Divider)

−
+

VS

I

+

−

R1

+

−

R2 VAB

A

B

+

-

1. Vth = Voc. In this case, we already know what Voc
is – it’s just given by the voltage divider formula!
Vth = VS

R2

R1+R2
.

2. Ino = Isc. If we short terminals A and B, we have a
resistor in parallel with a wire, which is equivalently
just a wire. You can think of this with a “path of
least resistance” argument, where current will only
traverse the resistance-less wire. More formally, the
short circuit demands that the voltage across the
resistor is 0, and thus the current across the resistor
must also be 0 by Ohm’s law. The circuit becomes:

−
+

VS

I

+

−

R1

ISC VAB

A

B

+

-

From KCL and Ohm’s law, we can argue that Ino =
Vs

R1
.

3. In this case, we can use both techniques for finding
the equivalent resistance!
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(a) Req = Vth

Ino

Req = VS
R2

R1 +R2
/
Vs
R1

Req =
R1R2

R1 +R2

(b) Vtest − Itest
To zero out the voltage source, we replace it
with a wire. The circuit becomes:

+

−

R1

+

−

R2 Vtest

A

B

+

-

We hook up a voltage source Vtest across the
terminals A and B. We could measure out
Itest, but in this case, we can already see the
equivalent resistance without any more math!

If we “reshape” the circuit by moving around
the wires connected to R1, we might see that
these resistors are in fact connected in parallel.
Thus, the equivalent resistance must be Req =
R1R2

R1+R2
, exactly the same as we calculated with

the other method! However, as we just saw,
using the Vtest − Itest method can be more
instructive with regards to understanding why
we got the result we did.


