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I. KIRCHOFF’S VOLTAGE LAW (KVL)

Much like how Kirchoff’s Current Law (KCL) fol-
lows from conservation of charge, Kirchoff’s Voltage Law
(KVL) follows from conservation of energy around a
closed loop. Specifically,∑

loop

Vi = 0

where the index i iterates through each circuit element
in the loop.

Procedure 1 (Solving circuits with KVL):

1. Label each element with (+) and (-) signs.

2. “Walk around” the loop. To determine the sign of
each voltage Vi, use the label you first encounter.
If you first encounter a (+) sign, add the voltage; if
you first encounter a (-) sign, subtract the voltage.
Repeat for each independent loop.

3. Add additional constraints on the current using
KCL.

4. Use I-V relations to write the equations in terms of
known values.

5. Solve the system of equations using your favorite
method.

Some remarks on this method:

1. Unlike the nodal analysis method, both KCL and
KVL are explictly invoked in this method.

2. Regarding step 2, how many loops is enough loops?
Roughly, I would say that you should draw enough
loops such that each circuit element is included.

3. Regarding step 1, see the following figure for an
example.

+ −
VB +

−

VC

+

−

VA

Let’s say we draw a clockwise loop. Then the first sign
we see is a (-) sign, so I add −VA. The next element, we
see a (+) sign first, so we add +VB . Same for the next
element, we add +VC . In total:

−VA + VB + VC = 0

If we had drawn a counterclockwise loop, the signs would
have been flipped. However, in the end it becomes the
same equation.

Example 1.1

R1

+ −
VR1

I1
R2

+ −
VR2

I2

+

−
VS IS

−

+

VIS

1. Label each element with (+) and (-) signs.
We have already done so on the diagram.

2. For each loop, write a KVL equation.

(a) Loop 1: Pick the clockwise loop on the left
half.

−VS + VR1 + VIS = 0

(b) Loop 2: Pick the clockwise loop on the right
half.

−VIS + VR2 = 0

3. Add constraints with KCL: The junction of in-
terest is the one where the two resistors and the
current source meet.

IS + I1 − I2 = 0

4. Use I-V relations to write equations in terms
of knowns: Ohm’s law is all we need in this case.

−VS + I1R1 + VIS = 0

−VIS + I2R2 = 0
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5. Solve the system of equations: In this case, we
have three equations and three unknowns: I1, I2,
and VIS . Note that we can add the two loop equa-
tions in order to reduce the number of unknowns
to just two, I1 and I2.

−VS + I1R1 + I2R2 = 0

IS + I1 − I2 = 0

In matrix form:

[
R1 R2

−1 1

] [
I1
I2

]
=

[
VS
IS

]

Our final solution is:

[
I1
I2

]
=

[
−ISR2+VS

R1+R2
ISR1+VS

R1+R2

]

II. SUPERPOSITION

Superposition is a powerful circuit solving technique
that fundamentally relies on linearity. Recall that when
using any of the circuit solving techniques we have gone
over (e.g. nodal analysis), we end up with a system of

equations A~x = ~b

A


u1
...
un

i1
...

im

 =



VS1

...
VSj

IS1

...
ISk


where ~x contains the node potentials and branch cur-

rents, and~b contains the independent current and voltage
sources.

If we squint at this matrix equation, we might notice

that we can express ~b as a sum of simpler ~bi’s:



VS1

...
VSj

IS1

...
ISk


=


VS1

0
...
0

+


0
VS2

...
0

+ . . .

Each of these has its own associated solution:

A~xV s1 = ~bV s1

...

A~xV sj = ~bV sj

A~xIs1 = ~bIs1

...

A~xIsk = ~bIsk

In effect, each solution contains the contribution of only
one independent voltage or current source, with every
other voltage or current source “zeroed out”. By linear-
ity, we can add these smaller solutions back together to

obtain the solution to the original equation A~x = ~b.

~b =
∑
i

~bi = A
∑
i

~xi = A~x

That was a lot of math, but it can summed up in the
following procedure.

Procedure 2 (Superposition):

1. For a given independent source: ”turn off” all other
independent sources. Recall from Thevenin and
Norton equivalent circuits that this means that a
current source becomes an open circuit, and a volt-
age source becomes a wire.

2. Solve for the voltage(s) and/or current(s) of in-
terest. Maintain the same sign convention
throughout.

3. Repeat steps 1 and 2 for every independent source.
At the end, sum the individual contributions to-
gether.

As an example, let’s revisit Example 1.

Example 2.1

R1

+ −
VR1

I1
R2

+ −
VR2

I2

+

−
VS IS

−

+

VIS

1. Voltage source VS :

(a) Zero out every other independent
source: We convert the current source IS into
an open circuit.
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R1

+ −
VR1a

I1a
R2

+ −
VR2a

I1b

+

−
VS

(b) Solve the circuit: To match what we did in
Example 1, we solve for I1a and I2a.

I1a = I2a =
VS

R1 +R2

In this case, we used the equivalent resistance
of resistors in series to simplify the analysis.

2. Current source IS :

(a) Zero out every other independent
source: We convert the voltage source VS into
a wire.

R1

+ −
VR1b

I1b
R2

+ −
VR2b

I2b

IS

−

+

VIS

(b) Solve the circuit: This is a current divider
circuit, which like the voltage divider has a
solution that is worth memorizing.

From KCL:

I1b + IS = I2b

From KVL, picking the loop only contain re-
sistors:

VR1b + VR2b = I1bR1 + I2bR2 = 0

Solving this system of equations, we obtain:

I1b = −IS
R2

R1 +R2

I2b = +IS
R1

R1 +R2

3. Sum the individual contributions:[
I1
I2

]
=

[
I1a
I2a

]
+

[
I1b
I2b

]
=

[
−ISR2+VS

R1+R2
ISR1+VS

R1+R2

]

This matches our result from Example 1. Hurrah!

III. OPERATIONAL AMPLIFIERS (OP-AMPS)

Operational amplifiers are a circuit component that
amplify an input voltage difference. The internal struc-
ture and design of an op-amp is a topic that one can
spend years studying (see EE105, EE140), but for the
purpose of EECS16A and EECS16B, we model the op-
amp as such:

V+

V−

+

−

VSS

+
−

VDD−VSS

2

+
− A(V+ − V−)

Vout

+

−

Using KVL, we may ascertain the behavior of the op-
amp:

−Vout +A(V+ − V−) +
VDD − VSS

2
+ VSS = 0

Vout = A(V+ − V−) +
VDD + VSS

2

We sum up this internal circuit with this symbol:

−

+U+

U−

Uout

VDD

VSS

where VDD and VSS are the power rails, V+ and V− are
the input ports, and Vout is the output port. In total, an
op-amp is a 5-terminal device!

Let’s look at the input-output behavior of the op-amp
a little more closely. We note that the output is limited
by the power rails, i.e. VSS ≤ Vout ≤ VDD. So really,

Vout =


VSS AVin + VDD+VSS

2 < VSS

AVin + VDD+VSS

2 VSS ≤ AVin + VDD+VSS

2 ≤ VDD

VDD AVin + VDD+VSS

2 > VDD

where Vin = V+ − V−. If we pick the power rails such
that VDD = −VSS , then we can simplify this expression:

Vout =


VSS AVin < VSS

AVin VSS ≤ AVin ≤ VDD

VDD AVin > VDD

For moderate values of A, the plot is as follows:
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VSS

VDD

V+ − V−

Vout

Note that VDD and VSS have been chosen such that Vout
is centered about 0 V, i.e. VDD = −VSS .

A. Op-Amps as Comparators

Op-amps are generally designed to have very large
gains A. In the limit that A approaches ∞, the input-
output curve starts approaching that of a step function,
as in the following figure:

(0,VSS)

(0,VDD)

V+ − V−

Vout

We might then think of an op-amp as a voltage “if-
statement” of sorts.

Vout =

{
VSS V+ < V−
VDD V+ > V−

In words, the op-amp compares V+ and V− and outputs
a voltage depending on which is bigger. In this way an
op-amp can be used as a comparator.

B. Negative Feedback

In practice, op-amps are not necessarily the best cir-
cuit to use as a comparator (the Wikipedia article on
comparators has a good introduction to this topic). More
commonly, op-amps are placed in negative feedback,

which sacrifices gain for more predictable operation. We
will see how negative feedback enables us to mainly oper-
ate in the linear regime of the op-amp, and how the trans-
fer function (typically Vout/Vin) becomes determined by
the external components in the feedback network as op-
posed to the specifics of the op-amp itself.

But first, what is negative feedback? In a feedback
amplifier, some fraction f of the output is sent back to the
input, and either added or subtracted. We distinguish
between negative and positive feedback by the sign: if
it is subtracted, the feedback opposes the original signal
and is said to be negative (see below figure).

Vin
A

Vout

f

+

−

fVout

In this block diagram, A is the gain (sometimes called
the open-loop gain, as it is what the gain would be with
no feedback network) and f is the feedback factor. For
most of the cases we will encounter in this class, A > 0
and f > 0. (More generally, the requirement for negative
feedback would be that the loop gain Af is positive, but
that is satisfied with A > 0, f > 0.)

Let’s look at this block diagram a little more closely.
The input to the gain block is the difference of Vin and
fVout, so

Vout = A(Vin − fVout)

Let’s say the output is perturbed by some ∆Vout. Then
fVout +f∆Vout is fed back and subtracted from Vin. But
since Vout = A(Vin − fVout)−Af∆Vout, we see that the
output goes back down again! The negative feedback
suppresses any change in the signal.

Vin
A

(1)Vout ↑

f

+ (3)ε ↓
−

(2)fVout ↑

In the above block diagram, I have denoted the differ-
ence Vin − fVout as the error signal ε.

As a brief detour, let’s consider the opposite case. If
the feedback signal is added, the feedback magnifies any
perturbations and is said to be positive (see below figure).
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Vin
A

Vout

f

+

+

fVout

The output expression becomes

Vout = A(Vin + fVout)

Let us play the same game as before. We perturb the
output signal by some ∆Vout. As before, fVout +f∆Vout
is fed back. This time, however, the feedback signal is
added to Vin, so we obtain Vout = A(Vin + fVout) +
Af∆Vout. We see that the output keeps growing, and
that the positive feedback reinforces the perturbation.

Vin
A

(1)Vout ↑

f

+ (3)ε ↑
+

(2)fVout ↑

In this case ε = Vin + fVout.
This method of perturbing the output and seeing which

way the system responds (opposes? reinforces?) is in
general how one should check for negative feedback.

C. Op-Amps in Negative Feedback

Before we place op-amps in negative feedback, let us
assume we are working with ideal op-amps. In the EECS
16 series, that means that

1. Input resistance is infinite.

2. Output resistance is zero.

3. Gain A is infinite.

Properties (1) and (2) are already captured in the circuit
model we drew in this section’s introduction. Property
(1) means that the input terminals (+) and (+) lead
to an open circuit. Property (2) means that no voltage
is dropped between the output of the op-amp and any
connections to other circuit elements, i.e. the node
voltage Vout is indeed equal to A(V+ − V−) + VDD+VSS

2

instead of something like A(V+−V−)+ VDD+VSS

2 −IRout.
Property (3) will have interesting implications for op-
amps in negative feedback, which we now summarize in
the so-called “Golden Rules.”

Golden Rules of Op-Amps

1. I+ = I− = 0. This follows from infinite input resis-
tance. No current can flow into the input terminals
of the op-amp if they lead to open circuits. This is
always true for an ideal op-amp.

2. V+ = V−, for an op-amp in negative feedback.
This golden rule follows from infinite gain, which we
will now show.

Let us once again consider the block diagram from before:

Vin
A

Vout

f

+

−

fVout

Translating this to an op-amp in negative feedback:

−

+

f

−
+

Vin

+

−
Vout

VDD

VSS

So V+ = Vin and V− = fVout. Making the simplifying
assumption that VDD = −VSS so that the input-output
relation exactly follows that of the block diagram,

Vout = A(V+ − V−) = A(Vin − fVout)

This can be solved for Vout in terms of Vin:

Vout =
A

1 +Af
Vin

Since V− = fVout

V− =
Af

1 +Af
Vin =

Af

1 +Af
V+

In the limit that A→∞, V− = V+.
The second golden rule might seem concerning – if

V+ = V− = 0, then should the output always be zero,
i.e. Vout = A(V+ − V−) = A(0) = 0? But as we will see
when we go through a number of prototypical op-amp
configurations, this is clearly not the case; the output is
not a flat line at Vout = 0. Mathematically, this peculiar-
ity can be resolved by the fact that we are multiplying
∞ by 0, and in the limit all sorts of wacky stuff can hap-
pen. Perhaps the above derivation can provide a more
satisfying explanation: V+ and V− are not actually equal
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except in the limit of infinite gain; really, they are almost
equal, with some finite but small error. This error is so
small that when multiplied by the huge gain A, we are
still operating in the linear regime of the op-amp, and
thus we get out a finite output voltage. Indeed, no real
op-amp would have infinite gain, so that is more akin to
what is happening in the lab.

As a final note, many times when op-amps are con-
nected in negative feedback, the power rails are omitted.
This only makes sense for an op-amp connected in neg-
ative feedback, where it is assumed that the power rails
are large enough such that we are always operating in
the linear regime. The constraint that the output can-
not exceed the power rails still holds however, so that is
something that should be kept in the back of your mind.

D. Examples

Example 3.1 (Buffer/Voltage Follower)

−

+

Vout+

−
Vin

The output is shorted to the inverting input, so

V− = Vout

But by the second golden rule,

V− = V+

Thus, we have unity gain

Vout = V− = V+ = Vin

Example 3.2 (Noninverting Amplifier)

−

+

+

−
Vin

R2

R1

Vout

From the second golden rule,

V− = V+ = Vin

We could do KCL, but something of note is that since
no current flows into the noninverting input of the op-
amp, R1 and R2 form a voltage divider of Vout. Thus,
we can jump immediately to our favorite voltage divider
formula!

Vin = Vout
R1

R1 +R2

We want Vout in terms of Vin however, so we do a little
switcheroo to get

Vout = (
R1 +R2

R1
)Vin = (1 +

R2

R1
)Vin

Example 3.3 (Inverting Amplifier)

−

+

R2i2

Vout

R1

i1
+

−
Vin

From KCL:

i1 = i2 ⇒
V− − Vin

R1
=
Vout − V−

R2

Note that we have implicitly invoked the Golden Rule
#1, by not considering any currents flowing into the op-
amp inputs. By Golden Rule #2, V+ = V− = 0. Thus,

Vout = −R2

R1
Vin

Example 3.4 (Differentiator)

−

+

Ri2

Vout

C

i1
+

−
Vin

By KCL:

i1 = i2 ⇒ C
d

dt
(V− − Vin(t)) =

Vout(t)− V−
R
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Plugging in V+ = V− = 0 by the second golden rule:

−C dVin(t)

dt
=
Vout(t)

R

Thus, we see that this circuit takes a derivative of the
input waveform!

Vout(t) = −RC dVin(t)

dt

Example 3.4 (Integrator)

−

+

C
i2

Vout

R

i1
+

−
Vin

By KCL:

i1 = i2 ⇒
(V− − Vin(t))

R
= C

d

dt
(Vout(t)− V−)

Plugging in V+ = V− = 0 by the second golden rule:

−Vin(t)

R
= C

dVout(t)

dt

We obtain the differential equation

dVout(t)

dt
= −Vin(t)

RC

If we are given the initial condition Vout(0) and would
like to find the output at a time t0:

Vout(t0) = Vout(0)− 1

RC

∫ t0

0

Vin(t)dt

The output voltage changes over the time interval of
interest by an amount proportional to the integral of the
input signal!

Example 3.5 (Exponential Amplifier)

−

+

Ri2

Vout
i1

+

−
Vin

We have introduced a new circuit element, the diode.
Diodes are very interesting nonlinear circuit elements,
which have the interesting property that they essentially
only conduct current in one direction. For the purpose of
this problem though, we invoke a more quantifiable ver-
sion of their I-V behavior known as the Shockley Diode
Equation:

ID = ISe
qVD
kBT

where VD is defined as such:

+ −
VD

The current equation is very intimidating looking, but
suffice to say that IS , q, and kB are constants, and
we will further assume that we are operating at a fixed
temperature so that the temperature T is also a con-
stant. The analysis is then essentially the same as the
previous inverting-esque amplifier configurations, start-
ing with KCL as usual.

i1 + i2 = 0⇒ ISe
q

kBT (Vin−V−)
+
Vout − V−

R
= 0

We have the same golden rule constraint, V− = V+ = 0,
and thus:

Vout = −RISe
qVin
kBT

So the circuit exponentiates the input.

Example 3.6 (Log Amplifier)

−

+

i2

VoutR
i1

+

−
Vin

From KCL:

i1 + i2 = 0⇒ V− − Vin
R

+ ISe
q

kBT (V−−Vout) = 0

Plugging in the second golden rule and moving terms
around:

Vout = −kBT
q

ln
Vin
ISR

We see that operational amplifiers can do a myriad of
mathematical operations, and in fact, before digital com-
puters took over op-amps were a central component of
analog computers.


