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Discussion 2A notes for students taking EECS 16B during Summer Sessions 2020. Topics include:
logistics, complex numbers (Cartesian and polar form, Euler’s formula, complex algebra, complex
conjugate, helpful identities).

I. LOGISTICS

Homework 1: Due Tuesday, 6/30.
Homework 2: Will be assigned soon. Due next Tues-
day, 7/7.
OH: Mondays, 5-6pm PST.
Homework Party: Fridays, 1-5pm PST. Reminder that
these exist, and are a great way to make progress on the
homework! Last week HW Party was pretty sparse :(

II. COMPLEX NUMBERS

A. Introduction

A complex number z is one that can be written in the
following form:

z = x+ jy

where x and y are both real numbers, and j is the imag-
inary unit j =

√
−1. We use j instead of i because in

electrical engineering, i is commonly used to represent
current and thus we would like to avoid any potential
confusion.

Since z is determined by the values of x and y, we
can represent z as an ordered pair (x, y). This notation
is suggestive of a two-dimensional Cartesian coordinate
system, and thus we often visualize complex numbers as
points in the complex plane, where one axis corresponds
to the real number line and the other axis corresponds to
the imaginary number line. See the figure below:
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One might wonder if Cartesian coordinates are the only
way to represent complex numbers. After all, if 16B has
taught us anything, it’s that there are many ways to look
at the same problem. As we will expand upon in the next
section, it turns out the answer is a resounding “No!”

B. Polar Coordinates

The above figure is suggestive of a different represen-
tation of complex numbers. Specifically, let us draw an
arrow from the origin to the point (x, y) in the complex
plane. We define the magnitude |z| as the length of this
arrow, and the phase θ as the angle from the positive real
axis to the arrow (with positive θ going counterclockwise
from the real axis). Then we may determine a complex
number with the ordered pair (|z|, θ), as part of a polar
coordinate system.

We can also convert between polar coordinates and
Cartesian coordinates using some trigonometry.

1. Polar (|z|, θ)⇒ Cartesian (x, y)

x = |z| cos(θ)

y = |z| sin(θ)

2. Cartesian (x, y)⇒ Polar (|z|, θ)

|z| =
√
x2 + y2

tan(θ) =
y

x
⇒ θ = atan2(y, x)
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atan2(y,x) is the two-argument arctangent. We are care-
ful to use this instead of the normal one-argument arct-
angent because it removes any potential ambiguity about
which quadrant we are looking at. As a quick example,
consider two points A = (1, 1) and B = (−1,−1). A is
located at an angle of 45◦ whereas B is at an angle of
225◦. If we take the arctangent for point A, we obtain:

θA = arctan(
1

1
) = arctan(1) = 45◦

This is all fine and dandy, but if we take the arctangent
for point B, we get

θB = arctan(
−1

−1
) = arctan(1) = 45◦

which is clearly not equal to 225◦. By requiring two
argument, atan2 can get around this situation.

In practice, if your calculator only has a arctan func-
tion, what I do to calculate the phase θ is I sketch the
complex number on the complex plane and use normal
arctangent. Based off my sketch, I then adjust by 180◦ if
needed. In general, plotting is very helpful for building
intuition about complex numbers!

C. Euler’s Formula

In polar form, (|z|, θ) corresponds to

z = |z|(cos(θ) + j sin(θ))

It turns out polar coordinates can be wrapped into a
much neater mathematical bundle than the above ex-
pression, using the famed Euler’s formula:

ejθ = cos(θ) + j sin(θ)

Thus,

z = x+ jy = |z|ejθ

To prove Euler’s formula, we employ Taylor expansions
(as many proofs do). Specifically, consider the Taylor
expansions of ex, cos(x), and sin(x):

ex =

∞∑
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If we replace x with jx, then ejx is:

ex =

∞∑
n=0

jnxn
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− j x
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= 1− (
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− . . . ) + j(x− x3

3!
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=

∞∑
n=0

(−1)n

(2n)!
x2n + j

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

= cos(x) + j sin(x)

As I said in discussion, Euler’s formula is a magical,
amazing formula that also happens to pop up all the
time in engineering and the physical sciences. And as a
bit of trivia, plug in x = π:

ejπ = cos(π) + j sin(π) = −1

Rearranging, this becomes the remarkable Euler’s Iden-
tity

ejπ + 1 = 0

which has 5 fundamental constants of mathematics (the
additive identity 0, the multiplicative identity 1, the nat-
ural logarithm base e, the imaginary unit j, and of course
pi), as well as 3 arithmetic operations (addition, multi-
plication, and exponentiation) all bundled into one com-
pact equation. People have even conducted brain imag-
ing studies on what equation mathematicians find the
most beautiful, with Euler’s Identity taking first place.
Ramanujan’s infinite series for 1

pi did not fare so well

unfortunately.

1

π
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2
√

2

9801
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(4k)!(1103 + 26390k)

(k!)43964k

Compare for yourself!

D. Complex Algebra

Here’s a list of how to do arithmetic operations
with complex numbers. In general, note that we use
whichever representation is more convenient for the task
at hand.

Let z1 = |z1|ejθ1 = x1 + jy1 and z2 = |z2|ejθ2 = x2 + jy2:

• z1 + z2 = (x1 + x2) + j(y1 + y2)

• z1z2 = |z1||z2|ej(θ1+θ2)

• z1/z2 = (|z1|/|z2|)ej(θ1−θ2)

• zn = |z|nejnθ

Again, having both a Cartesian and polar representation
is useful is because it gives us the ability to use whichever
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representation makes solving the problem easier. Con-
sider exponentiation: if we were to do that operation in
Cartesian form, then we would have to use an ugly bino-
mial expansion.

zn = (x+ jy)n =

n∑
k=0

(
n

k

)
xk(jy)n−k

The polar alternative is much cleaner.

E. Complex Conjugate

Finally, we introduce another operation on complex
numbers, the complex conjugate (represented by an
overhead bar). If z = x + jy = |z|ejθ, then the complex
conjugate of z is given by

z̄ = x− jy = |z|e−jθ

Perhaps unsurprisingly, the effect of a complex conjugate
on the polar form can be proved using Euler’s formula
(it’s a homework problem!).

While the definition of a complex conjugate is fairly
straightforward, it does seem a bit abstract. To give a
bit more geometric intuition to it, we once again plot on
the complex plane.
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We see that the effect of the complex conjugate is actually
to reflect the complex number across the real axis.

Finally, some selected and potentially useful identities
involving the complex conjugate:

• |z|2 = zz

zz̄ = (x+ jy)(x− jy)

= x2 − (jy)2

= x2 + y2

= |z|2
• (z1 + z2) = z̄1 + z̄2

• z1z2 = z̄1z̄2

• z1/z2 = z̄1/z̄2

• z + z̄ = 2<[z] (<[z] takes the real part of z)

z + z̄ = (x+ jy) + (x− jy)

= 2x

= 2<[z]

• z− z̄ = 2j=[z] (=[z] takes the imaginary part of z)

z − z̄ = (x+ jy)− (x− jy)

= 2jy

= 2j=[z]

It is worth noting that you can use the previous two
identities to write cosine and sine in terms of complex
exponentials. Specifically, note that

cos(θ) = <[ejθ] sin(θ) = =[ejθ]

Then by the previous two identities,

2 cos(θ) = ejθ + e−jθ 2j sin(θ) = ejθ − e−jθ

Or, rearranging:

cos(θ) =
ejθ + e−jθ

2
sin(θ) =

ejθ − e−jθ

2j

A final property of the complex conjugate that is worth
taking note of is the following:

z = z̄ ⇐⇒ z ∈ R

This is a useful property in proofs (for example, to show
that the eigenvalues of symmetric matrices are purely
real). To prove the forward direction, we use Cartesian
form:

x+ jy = x− jy

Equating the real and imaginary parts

x = x jy = −jy

The second equation reduces to

y = −y

which is only true if y = 0. Since y corresponds to the
imaginary part of z, then z must be purely real.

To prove the other direction, consider z ∈ R. Then z
can be written as

z = x+ 0y

where x is real, as usual. Taking the complex conjugate,

z̄ = x− 0y = x = z

Thus we have proved both directions.


