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True random numbers are an important resource in many cryptographic, scientific, and commer-
cial applications. Random number generators based on quantum processes are particularly appealing
because they cannot be predicted, even in principle. However, this unpredictability assumes that
the device can be trusted and has not been corrupted by an adversary. Thus, it is important to de-
velop random number sources that can be certified, or proven, random. We assess practical trusted
quantum random number generators, and compare them to two possible routes toward certifiable
randomness: 1) Bell tests, and 2) quantum supremacy. We conclude that recent claims of quantum
supremacy may soon lead to certifiable randomness with practically useful generation rates.

I. INTRODUCTION

The probabilistic nature of quantum mechanics has
fascinated scientists from the beginning of the theory,
with Einstein famously musing that “God does not play
dice with the universe.” It defies our everyday intuition,
where we might expect that the world is in principle
deterministic. Yet, it is precisely these idiosyncracies
that give rise to quantum technologies that could reshape
communications and information science.

In this review, we will specifically consider how the in-
nate randomness of quantum physics may be exploited in
random number generators (RNGs). Randomness plays
a key role in numerous areas of science and engineering.
For example, both classical and quantum cryptography
utilize random numbers to generate keys for encrypting
data [1,2]. Randomness is also employed in scientific
studies to perform Monte Carlo simulations or funda-
mental tests of physics. Notably, as first proposed by
John Bell, experiments testing his eponymous inequal-
ity should choose the measurement basis time-of-flight
and randomly in order to close the locality loophole [3-5].
Randomness even finds application in commercial venues
such as lotteries. As such, for many years considerable
research effort has been devoted to creating high quality
sources of random numbers.

To characterize the quality of various RNGs, it is
important to distinguish between true randomness and
pseudorandomness. While true randomness is difficult
to characterize, it is generally associated with unpre-
dictability. In the context of outputting a random bit-
string, imagine flipping a perfectly unbiased coin over and
over. Each outcome (string of heads and tails) is equally
likely, following the statistics of a uniform distribution.
In contrast, pseudorandomness by nature is predictable.
Typically, a pseudo-RNG (PRNG) begins with an input
bitstring known as the “seed,” and then an algorithm
based off number theory operates on the seed to out-
put bits that are uniformly distributed and uncorrelated.
Although the randomness is only apparent, for many ap-
plications this is sufficient. As it is, modern PRNGs are
generally well-designed and will successfully spoof statis-

tical test suites designed to check for hidden correlations
in RNG outputs.

Ultimately though, the seed completely determines the
output sequence of a PRNG. Even with a period of 219937

as in the widely-used Mersenne Twister implementation
[6], PRNGs are not cryptographically secure as an adver-
sary could in principle reverse-engineer a PRNG given
a sufficently long output sequence. To this end, hard-
ware RNGs are often considered the “gold standard”
for producing true random numbers. These devices op-
erate by measuring an unpredictable physical process,
either classical or quantum. For example, a classical
hardware RNG might use external events such as the
time between user keystrokes as the source of random-
ness [7]. However, such a source is not necessarily well-
characterized by physics and is potentially vulnerable to
attacks by a well-informed adversary who can manipu-
late the events to generate a particular outcome. Quan-
tum RNGs (QRNGs) are then particularly appealing be-
cause the unpredictability stems from fundamental phys-
ical theories – it is native to the process.

We structure our discussion as follows. We first provide
a brief overview of different implementations of QRNGs.
Given the success of quantum mechanics as a theory,
QRNGs would appear to already fulfill the goal of gen-
erating true randomness. However, in any realistic sce-
nario, there is always the possibility of classical noise that
corrupts the quantum nature of the setup, as well as the
possibility of an adversary or malicious manufacturer bi-
asing the device in such a way that renders the QRNG
predictable. Thus, we will also consider the growing field
of certifiable randomness, which is the idea that one can
prove a RNG is random given a few reasonable assump-
tions. We conclude with a brief discussion on the future
of QRNGs, and suggest that recent demonstrations of
quantum supremacy could soon lead to high-throughput
sources of certifiably random numbers.
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II. PRELIMINARIES

Some concepts that are key to any discussion of
random number generation are entropy and randomness
extractors, which we describe below.

Entropy: Entropy quantifies disorder or random-
ness. Although there are numerous mathematical
definitions of entropy, in general higher entropies imply
a greater degree of randomness than lower entropies.
One commonly-used entropy is the min-entropy [7].

Definition (min-entropy). For a random vari-
able X with support S, where the support is
S = {x : P (X = x) > 0 }, the min-entropy is defined as:

H∞(X) = − log2 max
x∈S

P (X = x)

Min-entropy determines the max number of uniform
bits that can be extracted from a distribution. That is,
given min-entropy h, the probability of each outcome
is bounded by P (X = x) ≤ 1/2h and thus at most
h random bits can be extracted. Note that this is a
necessary but not sufficient condition to extract h bits.

Randomness Extractors: The output of a QRNG
will not necessarily follow a uniform distribution [10].
The role of a randomness extractor is thus to take the
outputs of an imperfectly random source and extract
a sequence of near uniformly distributed random bits
– in other words, to increase the entropy. The earliest
example of a randomness extractor is often attributed
to von Neumann [11], who showed that a Bernoulli
sequence with success probability p can be converted
into a uniform sequence by exploiting the fact that
P (10) = P (01) = p(1 − p). Specifically, his algorithm
split the sequence into consecutive, non-overlapping
pairs of bits, discarded ‘00’ and ‘11’, and mapped ‘01’ to
0 and ‘10’ to 1.

III. TRUSTED QRNG IMPLEMENTATIONS

Quantum random number generators have a long his-
tory. The first implementations can be traced back to the
mid-20th century and operated with radioactive decays
as the randomness source [8-9]. In recent years, radioac-
tive QRNGs have been phased out in favor of photonic
implementations, which benefit theoretically from recent
advances in the field of quantum optics and experimen-
tally from high-quality optical instrumentation. In this
section, we discuss the historical progression of QRNG
implementations, up to its status as one of the most ma-
ture quantum technologies.

A. Radioactive Decays

The original QRNGs based on radioactive decays in-
corporated a radioactive source (typically β decays, i.e.
emitted electrons) with a Geiger-Mueller tube for detec-
tion. Assuming that the nuclei decay independently and
in a one-step process, the number of detector clicks in a
time period T can be described by a Poisson distribution

Pm(T ) =
(λT )m

m!
e−λT

where m is the number of detector clicks and λ is the
Poisson parameter which characterizes the average de-
cay rate. The main distinguishing feature between dif-
ferent implementations is then the method by which
the arrival times are converted into random numbers,
which can roughly be classified into two methods. In the
first method, the internal state of an electronic counter
switching between M states is recorded with each detec-
tion, producing random numbers modulo M [8]. In the
second method, the number of random detection events
is counted every T seconds to produce the digits [9]. In
both cases, some post-processing has to be done to ensure
the distribution of values is uniform.

While effective QRNGs, radioactive decays can only
be used in limited scenarios. In particular, for these de-
vices to achieve high throughputs, the randomness source
has to be highly radioactive, precluding widespread us-
age. Moreover, Geiger-Mueller tubes are bulky and re-
quire large operating voltages. However, as we will see,
in many ways photonic implementations of QRNGs are
spiritual successors to these historical devices.

B. Photon Qubits

Conceptually, beamsplitter measurements of photon
qubits provide a straightforward path toward QRNGs. If
the photon qubit is dual rail-encoded, then a 50:50 beam-
splitter may be used; if the qubit is polarization-encoded
and linearly polarized at ±45◦, then a polarizing beam
splitter may be used instead [12, 13]. Detectors placed at
the end of each path will then click with equal probabil-
ity, producing one random bit per event (Fig. 1A). Some
of the first optical QRNGs were based on this principle,
and in fact such a device forms the basis of ID Quan-
tique’s commercial product [14].

However, in practice this first-order model does not ac-
count for experimental nonidealities. Specifically, the two
detectors required are unlikely to have identical charac-
teristics, resulting in some bias that is difficult to predict,
and real detectors have a dead time after a click where the
sensitivity is greatly reduced. Although post-processing
procedures can asymptotically reduce the bias introduced
by instrumentation variation [15], similar to decay-based
QRNGs, detector dead time still places a major limita-
tion on the throughput of beamsplitter-based QRNGs es-
pecially since only one bit is generated per detection. His-
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FIG. 1. Operating Mechanism of Selected QRNGs. A) A photon qubit in the (|H〉+ |V 〉)/
√

2 state is sent through a polarizing
beamsplitter [12]. B) Time difference of arrivals are compared to generate binary bits, or digitized to a certain bit precision to
extract multiple bits. Similar principles may be used in decay-based QRNGs. C) Photon numbers between successive clicks are
compared [22]. D) Homodyne measurement schematic [25]. The quadrature distribution is binned to generate multiple bits per
bin. E) ASE measurement schematic [30]. Noise from a pumped EDFA is filtered, polarization-split, and sent to a comparator.

torically, this led to the development of optical QRNGs
based on photon arrival times, which can generate more
than one bit per photon and additionally only require a
single detector.

C. Photon Arrival Time

Photon-counting statistics indicates that coherent light
from an attenuated laser and incoherent light with a
sufficiently short coherence time (such that any photon
bunching cannot be resolved) will follow a Poisson dis-
tribution. Thus, QRNGs based on photon arrival time
often take inspiration from decay-based generators.

The first optical QRNG based on temporal information
operated by comparing the arrival times successive detec-
tion events, e.g. output 0 if t1 < t2 and 1 if t1 > t2 (Fig.
1B) [16]. While this demonstration removed the need for
two detectors, because the clock only has a finite resolu-
tion there was the possibility of the case t1 = t2 as well as
the introduction of unwanted correlations. Thus, post-
processing was required which limited bit generation to
half a bit per photon. Later work countered this dis-
cretization issue by using a highly attenuated laser [17],
such that the clock rate was faster than the average pho-
ton emission rate, and outputting 1 (0) if the photon was
detected on an even (odd) cycle (similar to the method
proposed in [8]).

Throughput was further increased by using the time
of arrival itself up to k bits of precision, with the first
demonstration producing 5.5 bits of entropy per de-
tection [18]. Interestingly, some proposals relax post-
processing requirements by carefully driving the laser
such that the Poisson distribution becomes roughly uni-
form [19]. Specifically, if the photon emission rate (Pois-

son parameter) is time-varying, then the distribution be-
comes

λ(t)e−
∫ b
a
λ(t′)dt′

which is uniform if the photon flux goes as 1/(T − t).
Improvements in photon-counting electronics resulted in
outputs of up to 16 bits/photon, paving the way for an-
other commercial product [20].

D. Photon Counting

Although there exist QRNGs based on photon count-
ing that operate along the lines of [9] and output bits
based on the number of detection events within a fixed
period, recent work has focused on using photon-number
resolving detectors to exploit the photon number statis-
tics of coherent states. Coherent states are quantum
states of light that can be described as a superposition
of photon number states:

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉

They can be generated by a laser, and possess many char-
acteristics that mirror the behavior of classical oscilla-
tors. Notably, the probability of detecting n photons is
Poissonian with average photon number 〈n〉 = |α|2.

P (n) = e−|α|
2 |α|2n

n!
= e−〈n〉

〈n〉n

n!

Initial proposals compared photon fluxes between subse-
quent measurements (Fig. 1C), outputting 1 if n1 > n2,
0 if n1 < n2, and nothing if n1 = n2 [21]. The through-
put can be slightly increased by assigning two bits to each
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photon number result, and binning the results such that
the distribution is approximately uniform (i.e. 0,1 pho-
tons correspond to 00 with probability 25%, 2 photons
to 01, and so forth) [22]. Alternatively, some approaches
design the photon number distribution to have a large
entropy, thereby optimizing the efficiency of randomness
extraction [23]. Still, the main difficulty associated with
photon counting generators is the limitations of number-
resolving detectors, which typically involve spatially mul-
tiplexed detectors that cannot distinguish if 2+ photons
are coincident on the same pixel.

E. Vacuum State Fluctuations

Another interesting quantum state of light is the vac-
uum state |0〉, which can be interpreted as the n = 0 level
in a quantum harmonic oscillator. Analogous to how the
harmonic oscillator ground state still has a finite energy,
the vacuum state has fluctuations whose statistics can be
exploited in QRNGs. In “position” (amplitude quadra-
ture) space,

|0〉 =

∫ ∞
−∞

ψ(x) |x〉 dx

where ψ(x) is the ground state wavefunction. This
weights the measurement outcomes by a Gaussian proba-
bility distribution, so random, unbiased numbers can be
generated by binning the measurement outcomes such
that all the bins have equal probability, or by using the
continuous-valued measurements themselves (up to n bits
of precision) [25]. Quadrature measurement is performed
using balanced homodyne detection (Fig. 1D). Briefly,
vacuum (a blocked beamsplitter port) is interfered with
a laser beam at a 50:50 beamsplitter and sent to two de-
tectors, whose difference current is proportional to the
quadrature amplitude. Although limited common-mode
rejection ratios, electronic noise, and detector bandwidth
can corrupt the signal, much of the recent progress in this
domain has focused on careful signal processing and ran-
domness extraction to achieve Gbps rates [26-29].

F. Amplified Spontaneous Emission

Optical QRNGs need not be limited to explicit manip-
ulation of quantum states of light. Spontaneous emission
that accompanies stimulated emission is very much quan-
tum in origin and a good source of entropy. The bene-
fit of such devices is that amplified spontaneous emission
(ASE) is a well-studied phenomenon in optical communi-
cations, providing the principal source of noise in erbium-
doped fiber amplifiers (EDFAs). Implementations ac-
cordingly take advantage of mature fiber amplifier tech-
nology [30], pumping an EDFA to generate incoherent
broadband ASE, splitting the signal into two polariza-
tions, and then performing clocked comparison of the
detector voltages to generate random bits (Fig. 1E). The

bit generation rate is primarily limited by filter and de-
tector bandwidths, resulting in bit rates of order Gbps
that can be further boosted by extracting multiple bits
per measurement [31].

IV. CERTIFIABLE RANDOMNESS

As demonstrated by the examples in the previous sec-
tion, an overarching challenge is that it is difficult to as-
certain how random these QRNGs actually are. In part,
this is due to experimental limitations (classical noise, in-
strumentation variability) that introduce unwanted bias
and correlations. Moreover, these devices are “trusted
QRNGs”, in that it is trusted that the operation is in-
deed quantum. But in principle, an adversary could bias
a beamsplitter, or preset the output sequence such that
they retain complete knowledge. Many works claim ran-
domness using statistical test suites, e.g. from NIST [32],
but these only provide a necessary rather than sufficient
condition. Although there exist proposals that aim to
set a compromise between complete trust and complete
verification, i.e. only the source or only the detector is
trusted [33], at any rate in the worst case it is important
to have generators that can be proven random.

In general, certified randomness protocols involve some
sort of statistical test that a quantum system/computer
can pass while a classical computer cannot. The natural
test to use is of course Bell’s inequality, which formed the
basis of the first (and as of present, only) experimental re-
alizations of certified QRNGs [34-38]. However, spurred
by recent claims of quantum supremacy [39, 40], recent
proposals have suggested that sampling problems used in
these experiments may also provide a path toward cer-
tified randomness. Certified random number generation
may well be the first practical application of quantum
supremacy.

A. Bell Tests

It is helpful to consider a simplified version of how such
a QRNG might operate, based on a variant of Bell test
called the CHSH game [41, 42]. As illustrated in Figure
2, Alice and Bob are given challenge bits x and y (cho-
sen uniformly at random) and want to produce a and b
such that x + y = xy. Alice and Bob do not communi-
cate during the game, but can collaborate on a strategy
beforehand. The optimal classical strategy is to always
choose a = b = 0, with win probability 75%. The optimal
quantum strategy is more involved. For simplicity, let us
consider polarization-encoded qubits. Alice and Bob first
share an EPR pair (|HH〉 + |V V 〉)/

√
2. Upon receiving

challenge bits, Alice measures in the standard basis if
x = 0 and in the Hadamard basis (polarizer at 45◦) if
x = 1 . Similarly, Bob rotates his polarizer to 22.5◦ if
y = 0 and to −22.5◦ if y = 1. With this strategy, Alice
and Bob win cos2(π/8) ≈ 85% of the time. If we define



5

FIG. 2. Diagram of the CHSH Game.

the CHSH score as J = P (win) − 3/4, then the corre-
sponding inequality is J ≤ 0. Violation of this inequality
indicates the output bits (a, b) must have some quantum
randomness, assuming no-signaling. However, this sim-
ple scheme results in a net loss of entropy, since the two
output bits are not uniformly distributed whereas the two
input bits (x, y) were. The entropy in/entropy out ratio
can be increased using a random expansion protocol. In
the first experimental demonstration of a Bell-certified
RNG, Pironio et al. realized that it suffices to give Al-
ice and Bob one particular (x, y) pair, say (0, 0), with
high probability 1 − p and the other three possibilities
with probability p/3 [34]. Intuitively, this is because the
process is still random despite the large bias toward one
particular challenge bit pair. Since it was assumed that
Alice and Bob cannot communicate, whoever received a
0 challenge has no way of discerning between (0, 1), (1, 0)
and (0, 0) and thus there is no way to “cheat” using local
hidden variables. Employing this protocol, it is possi-
ble to obtain approximately quadratic expansion in the
entropy.

In spite of this, the throughput is still extremely low
due to the nature of the experiment. Entanglement
events were heralded by interfering photons emitted by
two 171Yb+ ions and looking for coincident detections.
Occurring on average every 8 minutes, for the 42 certi-
fied random bits generated from 3,016 runs this results
in a bitrate on the order of µHz [34].

Later theoretical work by Vazirani & Vidick indicated
that this efficiency could be improved to exponential ran-
domness expansion using a more sophisticated protocol
for nonuniformly distributing challenges [42]. In practice,
experimental work usually sets the challenges to always
be (0, 0) for simplicity, and the main advance has been us-
ing spontaneous parametric downconversion (SPDC) in-
stead of trapped ions to produce entangled photons from
a nonlinear crystal [35-38]. Using SPDC, trials can be
run at a significantly higher frequency, most recently re-
sulting in a rate of 181 bps in a loophole-free Bell test
implementation [38].

B. Quantum Supremacy

Quantum supremacy is the experimental realization
of some computational task that cannot be solved in a

reasonable amount of time by any classical algorithm.
Quantum supremacy was recently claimed by Google
using a 53-qubit programmable superconducting pro-
cessor to sample from the output of random quantum
circuits (Random Circuit Sampling) [39], and quan-
tum advantage by Zhong et al. using a photon-based
sampling task known as BosonSampling [40]. Given
this dichotomy of a quantum computer being able to
easily perform a task a classical computer could never
do, quantum supremacy suggests an alternate route to
certified randomness. Note that at the moment only
Random Circuit Sampling (RCS) is known to have a
relevant statistical test that can verify randomness of
output bitstrings based on strong complexity-theoretic
arguments [43].

Heavy Output Generation (HOG): HOG is a statis-
tical test proposed by Aaronson & Chen for verifying
quantum supremacy [43]. At a high level, the idea is
that the output distribution of RCS is nearly uniform,
but some outputs strings are more likely (“heavy”).
Aaronson & Chen provided strong evidence that it is
exponentially hard for a classical computer to do better
than simply outputting the uniform distribution. In
contrast, a quantum computer can simply perform RCS.
Thus, if someone receives k output bitstrings and >2/3
are heavy, i.e. probability greater than the median
probability, then the HOG test is passed and it can be
concluded that there is some quantumness. In other
words, no classical computer can generate the same
amount of entropy as RCS in a comparable time. We
note that Google used a different benchmark, linear
cross-entropy benchmarking (XEB) [39, 44]; however
the basic idea is similar and in fact HOG and XEB are
specific cases of a more generalized measure [45].

Aaronson has recently proposed that Google’s quan-
tum supremacy experiment can be used to generate ver-
ifiable randomness from moderately sized quantum com-
puters (50-100 qubits) [44]. As depicted in Figure 3, the
proposal is as follows: 1) The client (pseudo)randomly
generates quantum circuits C1 . . . CM and sends them
to a server with access to a quantum computer, 2) the
server quickly performs RCS on those circuits and returns
a list of k samples S = (s1 . . . sk) from each distribution
Ci |0〉n, 3) for a few randomly chosen iterations, the client
performs the HOG test, and 4) if the tests pass, feeds
the output bitstrings S = (S1 . . . SM ) to a randomness
extractor.

Such a proposal could potentially produce certified
random bits at a more practically useful rate than Bell-
based implementations. Google’s processor sampled 53
qubits 106 times in 200 seconds, setting a very rough up-
per bound on their bit generation rate as 265 kbps [39]. In
practice, the HOG verification takes place on a classical
computer, which would only work for moderately sized
systems before the computation takes too long. How-
ever, HOG only need to be checked for a few circuits to
verify quantumness, so in principle this only introduces
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FIG. 3. Proposal for Certified RNG from Quantum
Supremacy. A classical computer sends pseudorandom cir-
cuits to a quantum computer [39], which sends back RCS
bitstrings whose quantum origin can be statistically tested.

a constant overhead. Another limitation that should be
studied in greater detail is that Google’s processor has a
fidelity of 0.2%, so the distribution is 99.8% uniform and
may not consistently pass HOG either.

V. DISCUSSION

Table I presents a summary of representative QRNGs
discussed in this work. Clearly, many advances have to
be made in the field of certified randomness for these
generators to be be comparably fast to more common
non-certified QRNGs. Still, they are catching up, with
Bell-certified QRNGs improving their speed 7 orders of
magnitude in the past decade and quantum supremacy
proposals showing potential to improve on that another
3 orders.

However, another factor that must be considered is fea-
sibility. In this regard the outlook for Bell certification is
quite poor. Beyond improving speed with SPDCs, most
advances since the original demonstration by Pironio et
al. have been to improve security analysis by closing
the detection and locality loopholes using highly efficient
detectors and space-like separation [35-38]. These ex-
periments are quite complex and require resources, e.g.
100m of space, that it is unlikely the average user of ran-
dom bits will have access to. In contrast, while Google’s
experiment is obviously extremely complex, the certifica-
tion test in the aforementioned proposal can in principle
be performed by the client if they have access to sufficient
(classical) computing power, so direct access to a quan-
tum computing setup is not required. Combined with the
higher bit generation rate, we expect that if a certified
randomness protocol is to take off, it will likely be based
on the Aaronson proposal or some variant.

TABLE I. Brief summary of representative QRNG implemen-
tations. For certifiable randomness (marked by *), we list all
implementations discussed in the manuscript.

Work Year Method Rate
Schmidt [8] 1970 Radioactive

Decay
<10 kbps

Jennewein et al. [12] 2000 Photon Qubit 1 Mbps
Stipcevic et al. [16] 2007 Arrival Time 1 Mbps
Wayne et al. [19] 2010 Arrival Time 110 Mbps
Ren et al. [22] 2011 Photon

Counting
2.4 Mbps

Applegate et al. [24] 2015 Photon
Counting

143 Mbps

Gabriel et al. [25] 2010 Vacuum State 6.5 Mbps
Zheng et al. [29] 2019 Vacuum State 6 Gbps
Williams et al. [30] 2010 ASE 12.5 Gbps
Argyris et al. [31] 2015 ASE 560 Gbps
Pironio et al.* [34] 2010 Bell Test <29 µbps
Christensen et al.* [35] 2013 Bell Test 0.4 bps
Liu et al.* [36] 2018 Bell Test 114 bps
Bierhorst et al.* [37] 2018 Bell Test <1.7 bps
Liu et al.* [38] 2018 Bell Test 181 bps
Google, TBD* [39] TBD RCS+HOG <256 kbps

VI. CONCLUSION

In conclusion, we have surveyed recent progress in the
field of random number generation. While for most ap-
plications PRNGs and trusted QRNGs are sufficient, it
is of particular cryptographic interest to produce ran-
dom numbers that can be proven quantum in origin, and
thus cannot be predicted even in principle. The first pro-
tocols developed and experimentally demonstrated were
naturally based off Bell tests, providing truly random
bits albeit at low generation rates. It remains an open
problem to develop devices with throughputs more com-
parable to standard trusted QRNGs. To this end, future
experimental work could revolve around sampling tasks
originally designed for quantum supremacy demonstra-
tions. As a promising path toward faster certified bit
rates and as the first practical application of quantum
supremacy, this would be quite remarkable.
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