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Boson-sampling is a nonuniversal model of quantum computation which finds its origins in linear
optical quantum computing (LOQC). The problem involves sampling from the output distribution
of n indistinguishable noninteracting bosons injected into an m-mode linear interferometer. This
sampling problem is expected to be classically hard to simulate, making boson-sampling a strong
candidate for demonstrating quantum supremacy in the near-term due to the relative simplicity of
its experimental implementation. Given the context of Google’s recent claim of quantum supremacy,
the usefulness of boson-sampling has been called into question. In this paper, we provide an overview
of recent progress in the field of boson-sampling, with a specific focus on its photonic implementation.
We argue that boson-sampling can find application in numerous fields beyond its original context.

I. INTRODUCTION

Quantum information science has captured much inter-
est from the scientific community in the past years, due
its prospects for secure communications and exponential
speedup over classical computers in solving certain prob-
lems [1]. As the nature of light is inherently quantum, it
is no wonder that using photons as qubits, the fundamen-
tal unit of quantum information, has been an appealing
route. The computational basis states |0〉, |1〉 can be
encoded in various ways, e.g. using horizontal/vertical
polarization or vacuum/single-photon Fock states. More-
over, single-qubit gates can be easily implemented using
appropriate beam-splitters and phase-shifters.

However, as noted by DiVincenzo in 2000, one criteria
for a scalable universal quantum computer is the ability
to apply a universal set of quantum gates [2]. From an
experimentalist’s point of view, this essentially amounts
to 1) arbitrary single-qubit rotations, and 2) a two-qubit
entangling operation, such as the CNOT gate. So while
single-qubit rotations are well within the reach of linear
optics interferometers, the capability of such elements
to perform two-qubit gates, and thus universal quantum
computing, was under debate for many years.

It thus came as a well-received breakthrough when in
2001 Knill, Laflamme & Milburn (KLM) presented their
celebrated theorem for Linear Optics Quantum Comput-
ing (LOQC) [3]. Under their approach, the application
of certain gates are conditioned on feedforward measure-
ments of ancillary photons, introducing an effective non-
linearity (using only linear optical elements) that can be
exploited to provide a universal gate set. As with all can-
didate platforms for quantum computing, this is difficult
to implement in practice, requiring a long list of experi-
mental details and precise engineering. Universal LOQC
thereby remains a long-term research goal.

It is from this context of LOQC that the boson-
sampling problem arises. Aaronson & Arkhipov (AA)
considered the intermediate problem of sampling from
the output distribution of a passive linear optics net-

work (i.e. no feedforward measurements) with Fock
state inputs [4]. Surprisingly, they found strong evidence
that this cannot be simulated efficiently on a classical
computer for moderate photon numbers. This makes
boson-sampling an attractive candidate for demonstrat-
ing quantum supremacy – the short-term goal of having
a quantum computer solve a well-defined problem that
no classical device, using the fastest methods, can solve
in a reasonable amount of time [5]. In particular, boson-
sampling provides certain advantages over more archety-
pal proposals, such as quantum simulation or a demon-
stration of Shor’s algorithm for factoring integers. First,
it solves a well-defined computational problem that can
be proven, under reasonable complexity theory assump-
tions, to be classically intractable. Second, due to the
relative simplicity of the experimental setup compared to
a full-scale universal quantum computer, it has greater
potential to be implemented in the near-term.

In this paper, we discuss recent advances in the field
of boson-sampling, with a specific focus on its photonic
implementation. We first provide a brief theoretical
overview of the physical model, and establish the com-
putational complexity of the problem. We then consider
progress and challenges in the physical implementation
of the experiment. Finally, in the context of Google’s re-
cent claim of quantum supremacy using a programmable
superconducting processor [5], we explore how the field
can progress beyond its origin in quantum supremacy.
We argue that outside its original context, there remain
many applications that can harness the unique properties
of boson-sampling.

II. THEORETICAL OVERVIEW OF
BOSON-SAMPLING

A. Physical Model

As the name suggests, the boson-sampling problem
is in general well-defined for any situation where indis-
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tinguishable noninteracting bosons interfere according to
the evolution of a linear network, described by a random
unitary matrix chosen according to the Haar measure [4].
However, for consistency and to maintain focus on the
photonic implementation, we will describe the problem
in the language of quantum optics. Figure 1 contains a
schematic illustration of the boson-sampling problem.

We first begin by preparing n identical single photons
in m modes. As in the original AA formulation, we typ-
ically consider n ≤ m ≤ poly(n). Each mode has an

associated creation operator â†i , which follows the stan-
dard bosonic commutation relations. Then, our input
state can be described by:

|ψin〉= |11 . . . 1n0n+1 . . . 0m〉
= â†1 . . . â

†
n |01 . . . 0m〉 (1)

Without loss of generality, we have assumed that the n
single photons are populating the first n modes. The
bosons are then injected into an m-mode interferometer
comprised of beamsplitters and phase-shifters that act on
at most two modes at a time.

Let us consider these optical elements in more detail.
According to the reciprocity relations [6], the unitary
transformation corresponding to a beamsplitter B(θ, φ)
can be described by the 2× 2 matrix

B(θ, φ) =

[
cos θ −eiφ sin θ

e−iφ sin θ cos θ

]
(2)

and for a phase-shifter, by

P (φ) =

[
eiφ 0
0 1

]
. (3)

It is then straightforward to see that these two passive
optical elements can generate all 2 × 2 unitaries. If we
consider that we actually have m modes, we note that
on the m− 2 other modes that are not of interest, these
elements simply act as the identity. These results can be
generalized to state that all m × m unitaries U can be
decomposed into a product of optical elements U1 . . . Uk,
each acting nontrivially on at most two modes [7]. More-
over, this can be done with k = O(m2) optical elements.

Thus, under the action of the interferometer, the cre-
ation operators evolve under the unitary transformation

â†i →
m∑
j=1

Uij â
†
j . (4)

Throughout these measurements, the total photon num-
ber is preserved. Correspondingly, the output is a super-
position of photon configurations |S〉 = |s1 . . . sm〉, where
si ≥ 0 ∀i and

∑m
i=1 = n. That is,

|ψout〉 =
∑
S

αS |S〉 . (5)

Finally, photon-number distinguishing photodetectors
are used to measure every output port. It can be shown

FIG. 1. Illustration of the boson-sampling problem. Adapted
from [32].

that the probability of obtaining some configuration S is
related to the matrix permanent of the transfer matrix
that describes the relevant transformation, i.e.

PS = |αS |2 =
|Per(US)|2

s1! . . . sm!
(6)

where US is an n×n submatrix of U constructed by tak-
ing si copies of the ith column of U . This task is then
repeated many times to sample from the output statis-
tical distribution with a finite number of measurements.

B. Complexity of the Problem

Computing the exact matrix permanent is known to
belong to the complexity class #P-hard, with the fastest
reported algorithm running in O(n22n) time for an n×n
matrix [8], or O(n2n) if the matrix is processed in a cer-
tain order [9]. Thus, it is perhaps unsurprising that since
the relevant probability distribution in boson-sampling
depends on the square of a matrix permanent, a classical
device cannot simulate the same task without exponen-
tial overhead. Specifically, AA showed that approximat-
ing the square of a matrix permanent to a multiplicative
constant also belongs to the class #P-hard, and that if
there existed a polynomial-time classical algorithm for
exact boson-sampling, it would collapse the polynomial
hierarchy [4]. As the polynomial hierarchy is founda-
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tional to computational complexity theory, it is strongly
believed that collapse is unlikely, thus providing strong
evidence for the hardness of exact boson-sampling.

However, it is also well-established that the perma-
nent of a matrix with real, non-negative entries can be
efficiently estimated [4]. Considering that any real boson-
sampling experiment would have errors and thus at best
approximate the distribution, the question becomes: Can
approximate classical simulation of the boson-sampling
problem be achieved in polynomial time? It turns out
that if the unitary transformation describing the in-
terfometer is sufficiently ”random”, the answer is no.
Briefly, consider a m × m Haar-random matrix. Then,
n × n submatrices with n ≤ m1/6 are approximately
Gaussian, i.e. the entries are close in variation distance
to independent and identically distributed (iid) complex
Gaussians N (0, 1)C [4]. As a result, the matrix does
not have any special structure for a classical algorithm
to exploit, and so it is conjectured that approximat-
ing the permanent of a Gaussian matrix is also #P-
hard. Correspondingly, it is expected that the existence
of an efficient classical algorithm for approximate boson-
sampling would also collapse the polynomial hierarchy,
and thus even approximate boson-sampling is classically
intractable.

III. PHOTONIC IMPLEMENTATION OF
EXPERIMENTAL BOSON-SAMPLING

Part of the appeal of boson-sampling lies in the rela-
tive simplicity of the required components. In general,
all boson-sampling experiments can be split into three
stages: 1) the preparation of the input Fock state, with
each mode containing at most 1 photon, 2) the evolution
of the state by a Haar-random unitary operator, and 3)
the measurement of boson-number at all output modes.
In the photonic implementation, the first stage requires
reliable single-photon sources; the second, some form of
a linear-optical network; and the third, high-efficiency
photodetectors. In this section, we discuss progress and
challenges facing these three components, as well as po-
tential solutions.

A. Single-Photon Sources

Initial boson-sampling experiments primarily used
spontaneous parametric downconversion (SPDC) as the
chosen method for input state preparation. Briefly, in
SPDC a second-order nonlinear crystal is used to convert
photons from a pump beam into photons in two lower-
energy modes, the signal and the idler (Fig. 2a). The
output state is then

|ψSPDC〉 =
√

1− χ2

∞∑
n=0

χn |n〉s |n〉i (7)

FIG. 2. Proposed single-photon sources. a) The mechanism of
SPDC. b) Multiplexing of photon trains from quantum dots
into different spatial modes, reproduced from [19] c) Strain
can be used to reduce spectral inhomogeneity in an array of
single-photon emitters, adapted from [20].

where χ is the squeezing parameter [10]. For single-
photon generation, the desired term in the superposition
is where n = 1, as the measurement of one photon can
then be used to herald the arrival of the other single pho-
ton.

However, while well-established, SPDC suffers a num-
ber of drawbacks. In particular, the number of photons
that can be generated is rather limited, with most ex-
periments limited to three photons – with high enough
pump powers, the nonlinear crystal can generate two si-
multaneous photon pairs in four different modes, with
one photon used to herald the other three [11-15]. Higher
numbers are unlikely, due to the probabilistic nature of
the process: if single pair generation occurs with prob-
ability ε, then the simultaneous generation of n pairs
occurs with exponentially decaying probability εn. Al-
though this probability can be increased by simply in-
creasing the pump intensity, this runs the risk of activat-
ing undesired higher-order nonlinear effects. As a result,
solid-state single photon emitters have garnered increas-
ing research interest in recent years. A comprehensive
review can be found in reference [16]. These emitters
typically arise in the form of quantum dots or defect
centers in solids, thus combining the benefits of atom-
like emission with scalable solid-state hosts. The key
parameters of interest are the brightness, stability, indis-
tinguishability, and single-photon purity. In particular,
these emitters can be quite bright especially when embed-
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ded in a cavity, i.e. they can generate photons at high
rates. However, they come with their own challenges,
particularly in the realms of indistinguishability and pu-
rity. Due to the complex many-body physics inherent to
solid state hosts, there is inhomogeneity and thus pho-
ton distinguishability from different emitters. Moreover,
with regards to purity, which dictates single vs multi-
photon emission probabilities (higher purity corresponds
to greater single-photon probability), only GaAs-based
quantum dots have purities greater than 99% compared
to values of 70-90% typical to other systems [16].

Still, numerous protocols have been developed re-
cently that utilize such solid-state emitters, in particu-
lar arsenide-based quantum dots. It is worth nothing
that this adds an additional constraint of IR-wavelength
( 900-1000 nm) operation, where such dots typically
emit. State initilization can be achieved using mode-
locked oscillators as the excitation, resulting in pulsed
single-photon streams that are nearly identical. These
photon trains can then be demultiplexed into different
spatial modes using fast optical switches (Fig. 2b) [17-
19]. This method was recently used to perform boson-
sampling with 20 input photons, while maintaining pu-
rity and indistinguishability as high as 97.5% and 95.4%,
respectively [19]. Alternatively, arrays of single-photon
emitters can be excited simultaneously, similar to scatter-
shot boson-sampling methods that utilize multiple SPDC
sources. While spectral inhomogeneity is an issue, strain
can be used to tune the emission of individual emitters,
a technique which has already been demonstrated in di-
amond defect centers using nanoelectromechanical actu-
ators (Fig. 2c) [20,21].

B. Linear-Optical Network

As a boson-sampling experiment large enough to
demonstrate quantum supremacy would require hun-
dreds of individual beamsplitters and phase-shifters,
bulky discrete optical components are unlikely to be
useful. Instead, experimental demonstrations of boson-
sampling have overwhelmingly used integrated photonics
(Fig. 3a) [12-15,22-23]. Haar-random unitaries can be
mapped to beamsplitters and phaseshifters with classi-
cal computers. The vast majority of such devices then
use fs or UV lasers to quickly micromachine the circuit
into a substrate, using nonlinear absorption to change re-
fractive indices locally [13]. Advances on the basic tech-
nique include three-dimensional waveguiding to achieve
better independent control over each directional coupler
[22], and fully reprogrammable photonic circuits com-
posed of cascaded Mach-Zehnder interfometers controlled
by thermo-optic phase shifters [23]. Such techniques en-
able the systems to apply any arbitrary m-mode unitary
transformation.

These techniques inevitably suffer from in/out-
coupling losses, as well as photon losses within the cir-
cuit. While not ideal, it is expected that simulating

FIG. 3. Schemes for implementing the requisite Haar-random
unitary transformation: a) Integrated photonics, reproduced
from [12], b) Time-bin encoding, reproduced from [26], and
c) Dispersive optics with heralded single photons, reproduced
from [24].

boson-sampling even with losses is expected to be classi-
cally hard [13]. Moreover, low-loss optical circuitry has
improved since the initial days of experimental boson-
sampling, with a recent demonstration of 98.7% optical
transmission using a 3D architecture composed of stacked
fused quartz trapezoids [17-19]. Each interface contains
a thin-film optical coating that effectively acts as a row
of beamsplitters, achieving ultralow loss at the cost of
reconfigurability and universality.

More exotic proposals also exist, although more work
needs to be done before attaining widespread adoption
(Fig. 3b, 3c). One proposal uses dispersive optics to per-
form boson sampling with temporal rather than spatial
modes [24]. Specifically, the proposal draws an equiva-
lence between boson-sampling and measuring the output
time of heralded single photons passing through disper-
sive optics, which would greatly relax photon source and
detector requirements. A different proposal uses time-
bin encoding, where single photons arrive in a train of
time bins [25,26]. A fiber loop with appropriate switch-
ing can then be used to introduce a time delay, moving
photons between adjacent time bins and enabling them to
interfere and vastly reducing the size of the experimental
setup.

C. Photon Detectors

Photon detectors used in boson-sampling can gener-
ally be divided into two groups: on/off ”bucket” detec-
tors, and photon-number distinguishing detectors [27].
Photon-counting detectors are generally more expensive
and difficult to make than bucket detectors. As a re-
sult, it is oft stated in the literature that for a n-photon
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FIG. 4. Photon detection. a) Energy band diagram depict-
ing impact ionization, the operating mechanism of SPADs.
b) Parallel arrays of nanowires for photon-number discerning
detectors. Reproduced from [29].

boson-sampling experiment, the number of modes should
be m >> n2. Under this condition, a straightforward
counting argument suggests a ”bosonic birthday para-
dox,” where it becomes probabilistically unlikely for more
than one boson to end up in the same final mode, and
as such bucket detectors are sufficient [4]. However, this
superquadratic growth in the number of modes precludes
the scaling of boson-sampling experiments, and as such
it may become relevant to resolve photon number. We
thereby discuss both types of detectors in this section.

As a brief overview, the most common single-photon
detectors used in boson-sampling are single-photon
avalanche diodes (SPADs) and superconducting nanowire
single-photon detectors (SNSPDs) [27]. SPADs operate
by applying a large reverse-bias voltage to a photodiode,
creating a steep potential gradient that enables a process
known as impact ionization (Fig. 4a). Essentially, the
device operates in a analogous manner to a photomul-
tiplier tube: photoexcited carriers accelerate due to the
gradient, scatter off the lattice and ionize more carriers,
thereby inducing a large current spike. SNSPDs operate
on the principle of superconductivity: a nanowire of su-
perconducting material is cooled to just below its critical
temperature Tc. If a photon is absorbed, the added en-
ergy raises the temperature locally above Tc and changes
the resistance in a detectable manner. Both implemen-
tations can be used as bucket detectors. In fact, even if
only bucket detectors are available, the issue of photon
number resolution can be addressed using postselection
[4]. That is, if n photons are known to have been in-
jected, filter out outputs where the number of bucket de-

tections are not exactly n. This of course depends greatly
on the detection efficiency, with the need for postselec-
tion decreasing as the efficiency approaches unity. In this
realm SNSPDs offer a clear advantage, with reported IR
wavelength detection efficiencies > 93% [28], whereas sil-
icon SPADs offer a peak efficiency of 65% at 650 nm
[27]. But since detector efficiency remains an active area
of research, it is conceivable that semiconductor-based
SPADs will improve their efficiencies to approach that of
SNSPDs, mitigating the high cost and complexity of the
latter.

In terms of number-resolving detectors, SNSPDs are
typically used. Since the resistance will change propor-
tionally to the number of photons absorbed, supercon-
ductivity inherently offers a natural way of photon count-
ing [27]. The issue is that if the entire nanowire tem-
perature increases above Tc, all superconductivity is lost
and the photon number saturates. This can potentially
be mitigated by using parallel arrays of nanowires, each
connected in series to a resistor (Fig. 4b) [29,30].

IV. APPLICATIONS

It is telling that in one of the early papers on boson-
sampling, the authors concluded their abstract with the
curt phrase that boson-sampling ”could lead to applica-
tions” [10]. Beyond demonstrating quantum supremacy,
the practical usefulness of boson-sampling seemed du-
bious. In this section, we discuss recent experimental
progress in boson-sampling toward quantum supremacy,
as well as recent work outside boson-sampling’s original
context. We conclude that the boson-sampling platform
shows great promise for applications in diverse fields such
as simulation and cryptography.

A. Quantum Supremacy

In Table 1 we summarize recent progress in experi-
mental boson-sampling. We note that the number of
input photons n and modes m has increased monotoni-
cally with time, most recently reaching a peak of n = 20,
m = 60 with 14 photons routinely detected at the out-
put. Corresponding to a Hilbert space of size 3.7× 1014

(48 qubits), this experiment was the first boson-sampling
experiment such that all output combinations could not
be exhausted [19]. Note that the threshold number of
photons for unequivocal quantum supremacy is expected
to be around n = 50 [31].

This result came just after Google’s claim of quantum
supremacy in 2019. Using a 53-qubit superconducting
processor, they performed the task of sampling from the
output distribution of random circuits, which is also ex-
pected to be classically hard to simulate [5]. Although
this claim is hotly debated, it certainly detracts from
boson-sampling’s original purpose: to be the fastest route
toward demonstrating unambiguous quantum advantage.
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TABLE I. Experimental progress toward quantum supremacy
using boson-sampling. Note that n refers to the number of
detected photons, while m refers to the number of modes.

Work Year n m
Tillman et al. [12] 2013 3 5
Crespi et al. [13] 2013 3 5
Broome et al. [14] 2013 3 6
Spring et al. [15] 2013 3 6
Carolan et al. [22] 2014 3 9
Carolan et al. [23] 2015 3 6
Wang et al. [17] 2017 5 9
Wang et al. [18] 2018 5 16
Wang et al. [19] 2019 14 60

Google’s results thus provide timely motivation to dis-
cover new applications for boson-sampling.

B. Molecular Simulation

Boson-sampling has particularly apt application as a
method of simulating molecular vibronic spectra [32-35].
In particular, as mentioned before the boson-sampling
problem is not relegated to the optical domain – in other
words, n photons in m optical modes is isomorphic to n
phonons in m vibrational modes. However, while boson-
sampling amounts to a rotation of the mode operators

â†′ = Uâ† = R̂†U â
†R̂U , because an electronic transition in

a molecule causes nuclear structural changes, the trans-
formation is more complicated. Specifically, the mode
can be displaced, distorted (squeezed), and rotated. Huh
et al. showed that this can be accounted for by simply
altering the input state to be a squeezed coherent state

|ψin〉= Ŝ†ΣR̂
†
CR
D̂J−1δ/

√
2 |0〉 (8)

= Ŝ†Σ |
1√
2
C†RJ

−1δ〉

where Ŝ†Σ, R̂†CR
, and D̂J−1δ/

√
2 are squeezing, rotation,

and displacement operators parametrized by the spe-
cific molecular system being discussed [32]. The boson-
sampling linear optical network then serves as a final ro-
tation to bring the system to the desired state before
measurement. An example for formic acid is shown in
Figure 5a.

This technique was recently used by Paesani et al. to
benchmark the quality of squeezed light produced on a
silicon chip [35]. Due to the low level of squeezing achiev-
able, most of the contributions came from vacuum, which
is a classically tractable problem. Thus, the improvement
in fidelity over a classical simulation method was mini-
mal. More experimental work should be done toward
improving the quality of squeezing in order for boson-
sampling to show a clear speedup in the task of simulat-
ing vibronic spectra.

Moreover, the initial insight that boson-sampling can
use any boson, not just photons, is quite general. We en-

FIG. 5. Boson-sampling beyond quantum supremacy. a)
The mechanism of boson-sampling has a deep connection to
molecular vibronic spectra. A comparison of the results of
boson-sampling vs. measured formic acid spectra are shown.
Reproduced from [32]. b) Proposal for generating verifiable
randomness from quantum supremacy demonstrations using
sampling problems. A pseudorandom seed from a classical
computer can be used to generate random circuits or beam-
splitter networks. A quantum device performs a task such
as random circuit sampling or boson-sampling and sends the
output to a classical computer. The classical computer veri-
fies the randomness and uses the high-entropy output to seed
a randomness extractor.

vision that photonic boson-sampling can potentially be
used to study many other bosonic systems. In partic-
ular, the original boson-sampling proposal has inspired
numerous alternative experiments that solve an equiva-
lent problem with a different physical system, such as
interacting spins [36]. The success of one system could
lead to insights into the others.

C. Cryptography

Boson-sampling has no known applications in cryptog-
raphy. Specifically, boson-sampling is typically viewed
from the perspective of a sampling problem, whereas
modern cryptography is based on function problems,
such as prime factorization, and the related concept of
decision problems. Roughly, decision problems are prob-
lems where the answer is a binary ”yes/no” for each in-
put. As an example, RSA encryption is predicated on the
assumption that there is no efficient classical algorithm
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for factoring large numbers [37]. Therefore, it remains an
open question to discover a decision problem that boson-
sampling can solve efficiently while a classical computer
cannot.

However, recent theoretical work has shown that this
path has promise, with Nikolopoulos & Broughham defin-
ing a general theoretical framework for for the design
of boson-sampling based decision/function problems [38].
Briefly, their framework involves dividing all possible out-
put configurations into separate bins, and asking ques-
tions about the most probable bin. As estimating the
most probable bin likely requires brute-force calculation
of output probabilities and thus matrix permanents, it
is expected (although not rigorously proved!) that prob-
lems in this framework will be classically intractable.

Finally, it was recently suggested that quantum
supremacy can be used to generate verifiable random
numbers [39-40]. This would find particular application
in both classical and quantum cryptography, as well as
scientific applications such as reliable Monte Carlo sim-
ulations and commercial applications such as gambling
[41]. Specifically, Aaronson and Chen recently showed
that the outputs of random circuit sampling pass a sta-
tistical test, Heavy Output Generation (HOG), that no
efficient classical algorithm can [39]. In essence, the test
indicates that no classical computer can generate the
same amount of entropy that random circuit sampling
does in a comparable time, thereby providing a method
of ”verifying” randomness. The outline of the proposal
is then as follows: 1) Use a trusted classical computer to
pseudorandomly generate quantum circuits, 2) perform
random circuit sampling on those circuits, 3) check for

high entropy in the output bitstrings using HOG, and 4)
if the statistical tests pass, use the output bitstrings to
seed a classical randomness extractor [40].

One can easily draw a parallel between random circuit
sampling and boson sampling, and surmise that boson
sampling could play a similar role in generating verifi-
able randomness (Fig. 5b). To date though, there is no
similar statistical test to HOG for boson-sampling that
refers to the measured outputs of the task, as opposed
to the distribution being sampled [38]. If such a test
were to be developed, we envision that boson-sampling
will provide an appealing alternative for verifiable ran-
dom number generation, for the same reasons that it is
a strong candidate for quantum supremacy: namely, the
relative simplicity of the implementation and the speed
of operation.

V. CONCLUSION

In conclusion, we have provided an overview of boson-
sampling. We discuss progress, challenges, and potential
solutions in the photonic implementation of experimen-
tal boson-sampling. Over the years, the complexity of
boson-sampling experiments have grown rapidly, and we
expect that with further improvements to the requisite
single-photon sources, integrated optics, and detectors,
the sample space will only continue to grow. On the ap-
plication side, much theoretical work needs to be done
to expand boson-sampling to domains such as molecular
simulation, cryptography, and random-number genera-
tion. Still, we conclude that boson-sampling has great
potential for applications beyond quantum supremacy.
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