Analyzing Qubits on the Bloch Sphere Rachel Pontes and Eliza Konvicka Bellaire High School, Bellaire, TX

What is the Bloch Sphere?

The Bloch Sphere allows one to visualize the state of a qubit (a quantum bit)

Why is this necessary?

- Qubits do not operate with classical probability (where the probability of something happening and not happening adds up to 1)
- Instead, qubits can exist in **superpositions** (the ability to exist in multiple states simultaneously)
 - The 2 poles represent the 2 states (0 and 1)
- When measured, the qubit collapses into either 0 or 1. The Bloch Sphere helps visualize what the qubit really looks like.

How to read the Bloch Sphere:

|0>

θ

- θ determines probability
- ϕ determines phase

General Quantum State: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

It can also be written as:

 $|\psi
angle = \cos(heta/2)|0
angle + e^{i\phi}\sin(heta/2)|1
angle = \cos(heta/2)|0
angle + (\cos\phi + i\sin\phi)\sin(heta/2)|1
angle$, where $0 \le heta \le \pi$ and $0 \le \phi < 2\pi$

Rotating Around Y Axis:

Rotating Around X Axis:

Quantum Operations

Quantum operations are used to change a system from one quantum state to another

Rotations are defined by the axis of rotation and the angle the vector is rotated

Operations on the bloch sphere model a laser pulse on qubits

Correcting Spreading Out

Spin Echo Sequence: applies a 180° inversion electromagnetic radiation pulse

Because of the variation in the frequency, the systems refocus back to the initial direction

