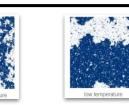
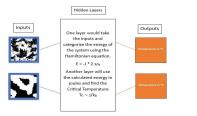
Predicting the Critical Temperature of the Ising Model

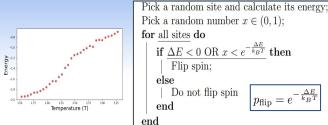
Jason Deng, Andon Bielamowicz, Jack Berry, Daniel Chan, Michael Liu

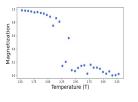


Introduction

The Ising model:


- Purpose: A mathematical model of particle ferromagnetism represented in 1-D or 2-D.
- Nearest neighbor: adjacent particles interact (isotropic), • particles align/anti-align based on the sign of "J" to go toward lower energy. (Hamiltonian: $\mathbf{E} = -\mathbf{J} * \mathbf{\Sigma} \mathbf{s}_i \mathbf{s}_i$)
- Critical Temperature: a second order phase transition occurs (symmetry w/in model, scale invariant patterns), high T = disorder, paramagnetic vs. low T = order, ferromagnetic)

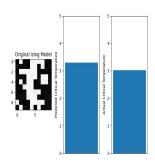




Methods/Procedures

Given an initial state, a machine learning model trained with a dataset of spin configurations can predict the critical temperature of the given state with high accuracy.

Results with less


trained data

 $p_{\text{flip}} = e^{-\frac{\Delta E}{k_B T}}$

Flip spin;

Do not flip spin

Results with more trained data

Mentor: Scarlett Yu

Goals

- Understand the mechanisms behind the Ising Model and the physical meaning the model has to real life structures (magnet, alloy, lattice gas)
- Connect ideas, like critical temp, presented in the ٠ Monte Carlo simulation to an application of machine learning (pattern recogn.)
- Compute Thermodynamic Ouantities of Magnetic Particles to study and interpret (visual data)
- Combine Monte Carlo and machine learning to increase accuracy and fine tune model (apply to quantum computing at later stages)

Acknowledgements

This work was completed as part of the Quantum Engineering Research and You (QuERY) program at Bellaire High School, supported by the Harvard Ouantum Initiative and MIT COE-iOuISE (Center for Quantum Engineering, Interdisciplinary Ouantum Information Science and Engineering program).

References
Jar, J. (2019). The Ising Model. The Ising model. https://stanford.edu/~jeffj ar/statmech/intro4.html

The Code

Ising Model

ML-Specific