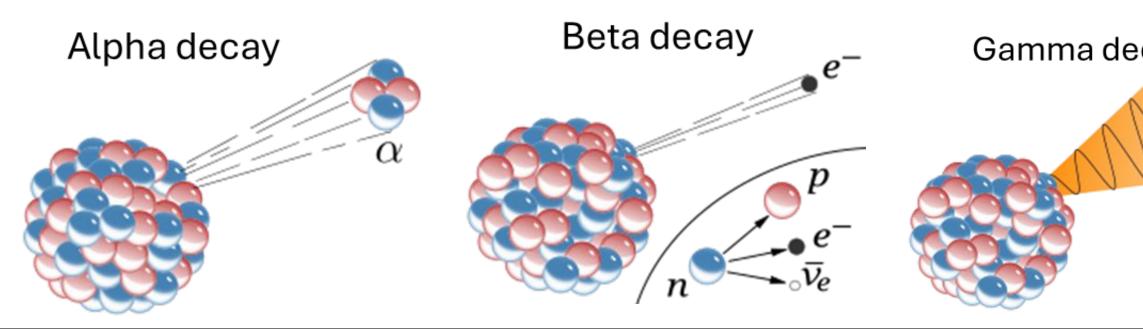
Visualizing cosmic rays with a cloud chamber

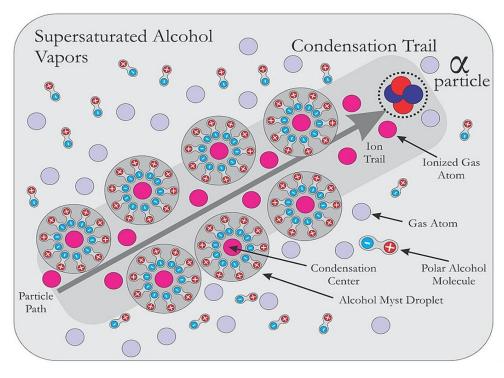
Sara Kannan¹, Akshatha Perumal¹, Miranda Lu¹, Kashika Adhikari¹, Helen Beebe¹, Joshua Tidwell¹, Maria EscobarEspinal¹, Anant Kale² ¹Bellaire High School, ²Harvard

Cosmic rays and Radioactivity


Cosmic rays are a mixture of mostly protons and helium nuclei. Radioactive decay is a process in which an unstable atomic nucleus de into a different state releasing energy and daughter products. **Types of decay:** Alpha decay(α), Beta decay(β), Gamma decay (γ)

 \rightarrow Alpha decay(α) nucleus emits He2+: two protons + two neutrons.

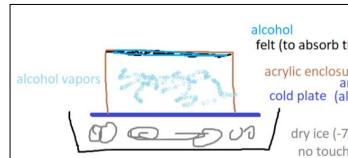
 \rightarrow **Beta decay(\beta)** emission of electron + other decay products


 \rightarrow Gamma decay(γ): high energy photons/electromagnetic radiation Uses of radioactivity: nuclear power, medical uses, weapons, indus applications

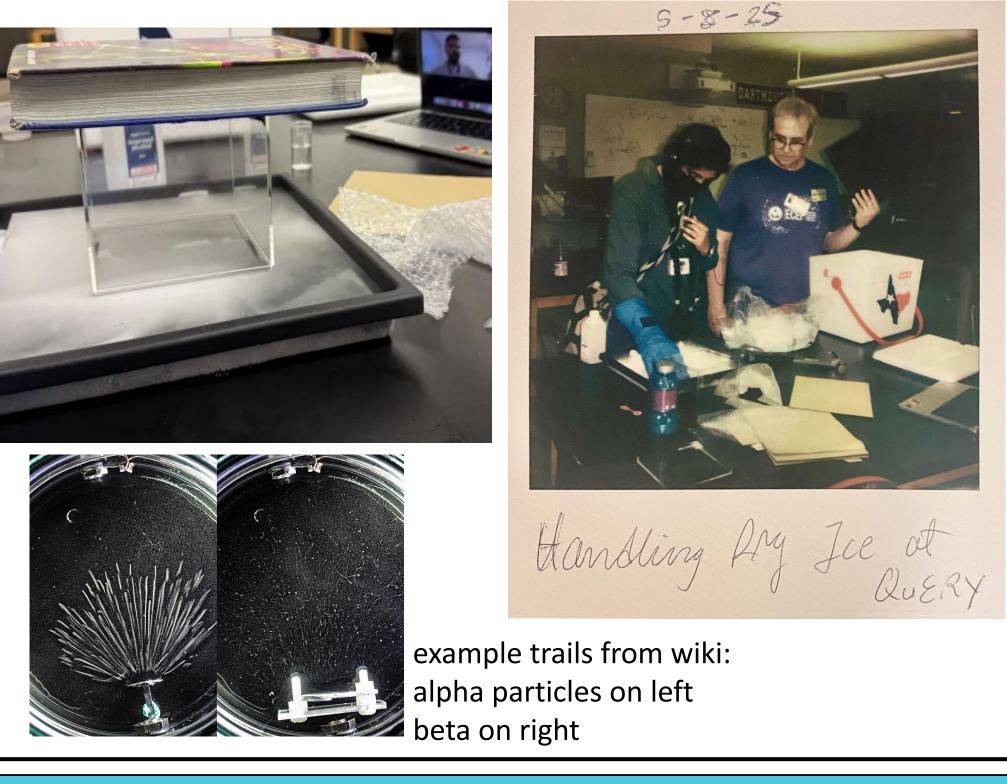
• Sources of radiation: stars, supernovae, accelerating charges

Cloud chamber: Working principle

Chamber containing supersaturated vapors of water/alcohol used to study of formation, and also as a particle det How it works: Charged high energy particles (alpha, beta particles) leave trail of lons serve as nucleation sites for condensation of (polar) water/alcohol vapors. help visualize the paths of radiation!


Similar: airplane contrails (soot parti

Miscellaneous Gallery



	Experimental results: Const
decays	Materials:Dry ice, anodized aluminum plate, plastic tray, acrylic box, isopropyl alcohol (IPA), feltProcedure:1. Place felt in acrylic box, soak with IPA2. Place dry ice in plastic tray, plate on top of dry ice, acrylic cube on top3. Dim lights and shine flashlight from side.Observations:Alcohol vapor from top of acrylic forms thick fog/trails as it condenses on reaching aluminum plate belowDifferent kinds of trails (length, thickness, frequency) - Longer trails = beta decay, thicker trails = alpha decay
	Applica
cloud etector. of ions 5. Trails	 Early uses – discovery of fundamental particles – positron (anti-encoder Recent experiments use a similar complimentary setup – bubble radiation causes local boiling of the superheated liquid. Educational demos – helps visualize radiation and different types Aerospace – assessing radiation exposure risks to astronauts and Radiation Therapy – monitoring the path of protons and electrominimizing harm to healthy tissues.
	References and Ac
ticles)	References:How to build a cloud chamber: https://youtu.be/xky3f1aSkB8?si=V/ Wiki: https://www.selence/wiki/Cloud_chamber Radioactive Decay information: https://scienceinfo.com/radioactive Radioactivity: https://www.energy.gov/science/doe-explainsradioactive Applications: https://www.energy.gov/science/doe-explainsradioactive Acknowledgements:
the alcohol) sure anodized aluminum plate) -70 C) ching with bare hands	 We thank Dr. Newland, Ms. Chopra, and Mr. Landry for their adv This work was completed as part of the Quantum Engineering supported by the Harvard Quantum Initiative and MIT through the for Quantum Engineering, Interdisciplinary Quantum Informatio

struction and observations

ations

-electron) and muon bble chamber of Liquid Helium– any small disturbance from

- es of cosmic rays for schools and museum exhibits
- d electronic systems on board spacecraft.
- trons to ensure radiation is accurately delivered to tumors -

cknowledgements

<u>/6kUyF255r5ngBXV</u>

<u>ve-decay/</u> activity

- dvisory role and support!
- ng Research and You (QuERY) program at Bellaire High School, the Research Laboratory for Electronics and CQE-iQuISE (Center on Science and Engineering program